The Toolbar

The Toolbar is a row of buttons at the top of the main window which represent application commands.
Clicking one of the buttons is a quick alternative to choosing a command from the menu. Buttons on
the toolbar activate and deactivate according to the state of the application.

Button
FaE|
=

B
R
{4

wn
=+
=
o

o

-
o

.-\.E
o

og
o4

0

O B3] B0
3
2 m =

orm
I

ma ¢ o o

o
=
mm

L
—
=
a

CRE

Iiy

Action

Open File to Disassemble.

Save Disassembly to a Text File.

Find Text.

Copy Selected Dissassmbly Text Lines.
Goto Code Starting Location of Code.
Goto Program Entry Point in the Code.
Select and Goto Specified Page .
Select and Goto Specified Location .
Execute Jump Instruction.

Return From Last Jump.

Execute Call Instruction.

Return From Last Call.

List Import Functions.

List Export Functions.

Display of Data Object in Hex Format.
Display of Code Data in Hex Format.
List and Search Menu References.

List and Search Dialog References.

List and Search String Data References.

Print the Disassembler Text.

Menu Equivalent
Disassembler|Open
Disassembler|Save

Search|Find

Disassembler|Copy Selected Lines
Goto|Goto Code Start Point
Goto|Goto Program Entry Point

Goto|Goto Page

Goto|Goto Code Location

Execute Text|Execute Jump

Execute Text|Return From Last Jump
Execute Text|Execute Call

Execute Text|Return From Last Call
Functions|Imports

Functions|Exports

Hex Data|Hex Display of Data Objec/Segmentd
Hex Data|Hex Display of Code Data
Refs|Menu References

Refs|Dialog References

Refs|String Data References

Disassembler|Print



Contents

General Information About W32Dasm Version 8.x Series
W32Dasm Information

For the latest W32Dasm update information.
Visit the W32Dasm WEB page at:
http://www/expage.com/page/w32dasm

Debugger Tutorial

Tutorial

Tutorial - 1.0 Getting Started

Tutorial - 2.0 Saving The Disassembly Text and Creating a Project File
Tutorial - 3.0 Open an Existing Project File

Tutorial - 4.0 Disassembly Text Navigation
Tutorial - 5.0 Printing/Copying Disassembly Text

Tutorial - 6.0 Loading a 32 Bit Disassembly into the Debugger
Tutorial - 7.0 Running, Pausing, & Terminating a Program

Tutorial - 8.0 Single Stepping a Program

Tutorial - 9.0 Setting & Activating Program BreakPoints

Tutorial - 10.0 Attaching to an Active Process

Tutorial - 11.0 Modifying Registers, Flags, Memory, & Instructions
Tutorial - 12.0 Exploring Called Modules (DLLS)

Tutorial - 13.0 The WIN API Detail Feature

Commands
Disassembler Menu

Project Menu

Debug Menu
Search Menu

Goto Menu
Execute Text Menu
Functions Menu
HexData Menu
Refs Menu

Help Menu

Toolbar
Toolbar Commands



For information on how to use Help, press F1 or select Using Help from the Help menu.



W32Dasm Version 8.x Series General Information:

This is the Full Version 8.x Series of W32Dasm. It is NOt to be copied for distribution
or downloaded as shareware.

Platform Notes:

W32Dasm Version 8.xx Series requires Windows 95. Or Windows NT 4.0

It will load and run on Windows NT 3.51 if a Windows 95 or Windows NT compatible
IMAGEHLP.DLL file is placed in the same directory as W32Dasm. With out the newer
file, an error message will appear during the initial load. Also, some dialog formats are
not completely supported by NT 3.5 and some dialog controls will not display properly.

It will also load on Windows 3.11 with W32s but the debugger operation will be
unpredictable.

Comments, Questions, & Problems:

If you have any Comments (Good & Bad), Questions About or Problems with W32Dasm Ver
8.x, send them to me via Email. (urbie@msn.com)

If you encounter a problem, please provide as much detail as you can about your computer
system, file you were disassembling, operation you were performing, etc. in your description
of the problem.

W32Dasm Series 8.xx New Functionality:

* *W32Dasm now runs on Windows NT 4.0. (See Platform Notes Above)

New in Version 8.5

* W32Dasm will now disassemble the Intel MMX instruction set.
New in Version 8.7
* Added a Code Patch Function (Instruction Assembler) to the 32 bit debugger.

Windows 32 Bit PE Format Files:

W32Dasm Version 8.x will disassemble 32 Bit Windows programs that are in the Portable
Executable (PE) Format.

For valid Windows 32 Bit PE formats, an assembly code listing will be produced that has
header information describing all Imported and Exported functions in the file. Exported
Functions, Imported Functions and String Data references are color coded on the
screen listing.

Search functions are available to aide in finding text, functions, code, string data, etc.

Imported Functions, Exported Functions and String Data References are listed
alphabetically in special List Boxes with a search feature.



See:

Imports

Exports
String Data Reference

A Goto Program Entry Point command is available to quickly find the program starting
point. (Starting points for windows programs are not necessarily at the start of the code
listing).

A Goto Code Location command is available to quickly goto any valid code location
reference.

Commands for Execute Jump, Execute Call, Return From Last Jump, and Return From Call
are also available.

Windows 16 Bit NE Format Files:

W32Dasm Version 8.x will disassemble 16 Bit Windows programs that are in the New
Executable (NE) Format.

For valid Windows 16 Bit NE formats, an assembly code listing will be produced that has
header information describing all Imported and Exported functions in the file. Exported
Functions, Imported Functions and String Data references are color coded on the
screen listing.

Search functions are available to aide in finding text, functions, code, string data, etc.

Imported Functions, Exported Functions and String Data References are listed
alphabetically in special List Boxes with a search feature.

See:

Imports
Exports
String Data Reference

A Goto Program Entry Point command is available to quickly find the program starting
point. (Starting points for windows programs are not necessarily at the start of the code
listing).

A Goto Code Location command is available to quickly goto any valid code location
reference.

Commands for Execute Jump, Execute Call, Return From Last Jump, and Return From Call
are also available.

NOTE: W32Dasm Ver 8.x will automatically find Imported Function Names if the import
DLL files exist either in the Windows System Directory or the Current Directory of the
file being disassembled. If the Import DLL file is not found or does not contain function
names, only the Imported Function Ordinal will be displayed.

Windows 32 Bit LE Format Files:




W32Dasm Version 8.x will disassemble 32 Bit Windows programs that are in the Linear
Executable (LE) Format. (ie: Vxd files and others).

For valid Windows 32Bit LE formats, an assembly code listing will be produced that has
header information describing the file and its objects. Limited Search functions are
available. Commands for execution of jump, return from jump, call, and return from call
instructions are also available.

Other File Formats:

W32Dasm Version 8.x can also disassemble the byte data in any any file. If the file opened
for disassembly is not in the Windows 32Bit PE, 32Bit LE, or 16Bit NE format, the user will be
given the option to disassemble the opened file from a user specified starting byte offset
into the file.

NOTE: The user has a choice of treating the data in the file as 32 bit assembly code or 16
bit assembly code when disassembling via a checkbox on the popup dialog box that appears
when raw disassembly is the option.

NOTE: W32Dasm automatically detects .COM files and sets the 16 bit option and first code
location value to :0001.0100.

NOTE: Disassemblies of files (Other than .COM files disassembled as 16 bit) not in the
Windows 32Bit PE, 32Bit LE, or 16Bit NE format will not have Data references.

NOTE: Disassemblies of files not in the Windows 32Bit PE, 32Bit LE, or 16Bit NE format will
not have Import or Export references.



Disassembler Menu

The Disassembler menu provides commands for opening files for disassembly, saving
disassembler text and creating Project files, printing disassembler text, changing printer
/screen fonts, setting disassembler options and exiting the application.

Open File to Disassemble

Opens an existing file for disassembly.

To enable the selection of any file extension for opening, select All Files(*.*) from the List
Files of Type list box in the Open File Dialog Box.

Save Disassembly Text and Create Project File

Saves the disassembler text to a ASCII file and creates a .hpj Project file. Project files are
used to save time when repeatedly opening large files for disassembly. The default filename
for the text and project files are the original disassembly filename with an .alf (Assembly List
File) extension and .hpj (Hex Project) respectively.

Print Preview

View a sample printout of the current disassembler text.

o
—+

rin

Sends the disassembler text to a printer. User can select specific pages, lines, or print the
whole listing.

Print Setup
Set printer characteristics, ie Landscape, Portrait, etc.

Copy Selected Lines

Copies Selected Disassembler Text Line/s to the Clipboard.
Select Font
Displays Font Select Dialog from which the user can select fonts.

Save Default Font

Sets the currently selected font to the default startup font.

Clear All Trace Marks

Clears all red trace marks from the screen listing.
Disassembler Options
Sets various disassembler default options.

Exit



Exits the W32Dasm application.



Project Menu

Open Project File

Text



Debug Menu

The Debug menu provides commands to Load or Attach To a 32 bit Executable Process and
DEBUG by using Single Step and Breakpoint Commands.

Load Process
Loads a disassembled process into the debugger

Attach to an Active Process

Disassembles an active process, then attaches it to the debugger.

BreakPoint Toggle

Toggles a breakpoint at the Highlighted Code Line. This function is active only when the
debugger is active.

Run Process

Runs the process currently loaded in the debugger.
Pause Process

Pauses a process that is running in the debugger

Goto Current Eip

Sets the disassembly to the current instruction pointer. (EIP)

Single Step Thru

Single Steps over calls and Repeat functions.

Single Step Into

Single Steps into Calls and Repeat functions. NOTE: Many API Calls are automatically
steppped over by the debugger and cannot be stepped into.

Auto Single Step Thru

Animates the Single Step Thru function.
Auto Single Step Into
Animates the Single Step Into function

Terminate Process

Terminates the process currently loaded in the debugger

Debugger Options

Sets various default options for the debugger.






Search Menu
The Text Search menu provides commands to find and mark selected text.
Find Text

Finds a pattern of text and marks in red on the screen display. This is useful for finding
specific functions in the disassembly text. All code location begin with a semicolon

(ie :004123CB (32 Bit) or :0004.345D (16 Bit)) to uniquely identify them in searches.
Searches can be performed up or down from the current screen location by selecting the
appropriate button in the Find Dialog Box. The text Case Match is defaulted OFF but may
also be activated in the Find Dialog Box.

Find Next

Repeats search of last find operation. The F3 key can also be used for “Find Next”
operations.



Goto Menu

Goto Code StartSets Disassembled text to the start of the Code Listing. The F7 or Toolbar
Button can also be used for this function.

Goto Program Entry PointSets Disassembled text to Program Entry Point Code. The F8 or
Toolbar Button can also be used for this function.

Goto Page

Sets Disassembled text to the Page Selected from the Goto Page Dialog Box. The F9 or
Toolbar Button can also be used for this function.

Goto Code Location

Sets Disassembled text to the Code Location Offset Selected (32 Bit) or Code Location
Segment.Offset (16 Bit) from the Goto Code Location Dialog Box. The F10 or Toolbar Button
can also be used for this function.



Execute Text Menu

The Execute Text Menu provides access to the generic jump, call, and return from call
commands.

Execute JumpSets listing to the location specified by the jump instruction that is at the top
line of the screen display.

Return From Last JumpSets listing to the location of the last executed jump instruction.

Execute CallSets listing to the location specified by the call instruction that is at the top line
of the screen display.

Return From CallReturns listing to the location of the most recently executed call (See
Execute Call).




Functions Menu

The Functions Menu provides access to the Import and Export Function List Boxes.

ImportsDisplays the Imported Functions List Box.

ExportsDisplays the Exported Functions List Box.



Hex Data Menu

The Hex Data menu provides access to the Data Object/Segments Hex Display and Hex
display of the code currently displayed on the screen..

Hex Display of Data Object/Segments

Displays the Data Object/Segments in hexadecimal form.

Hex Display of Code DataDisplays the current screen code as Hex data.




Refs Menu

Menu ReferenceDisplays the Menu Reference List Box.

Dialog ReferenceDisplays the Dialog Reference List Box.

String Data ReferenceDisplays the String Data Reference List Box.



Help Menu

The Help menu provides access to the help system and the about dialog.
ContentsHelp topic contents.

Context Help

Context sensitive help.

About

About W32Dasm.



Exiting

To exit W32Dasm, choose File|Exit from the menu. You will be prompted to save any unsaved
disassembly text before exiting.



Printing

There are three commands on the File menu which support printing of disassembled text
from W32Dasm. File|Print Setup is used to select and configure a printer device. File|Print
Preview displays a special preview window which shows how the text will appear when
printed. File|Print allows for printing all or selected pages of the current displayed
disassembler text.




File Exit Command

The File|Exit command exits W32Dasm. If you've modified documents without saving, you'll
be prompted to save before exiting.



File Open Command

The File|Open command displays the Open a File dialog box so you can select a file to
disassemble. If the file selected is not in the Windows 32 bit PE format, 32 bit LE format, or
Windows 16 bit NE format, an option to interpret and disassemble the file as raw 32 bit
assembly code or raw 16 bit assembly code will be enabled. Use the “List Files of Type” list
box to choose the file extensions that will displayed in the file selection box. All Files(*.*) can
be chosen to list all files in the selected Directory.

NOTE: The last selected Directory and FileType selected will be the default the next time the
File Open Dialog is selected.

See Tutorial 1.0




Disassembler Print Command

The Print|Print command prints all, selected lines, or selected pages of the disassembler
text. Use File|Print Preview to see how the text will be laid out on printer pages. Use File|
Print Setup to select a printer, and to set printer options.

(See Tutorial 5.0) more more details.




Disassembler Print Preview Command

Disassembler|Print Preview opens a special window that shows how the disassembled text
will appear when printed. The preview window shows one or two pages of the active
document as they would be laid out on printer pages. If the Printer is set up for Landscape
printing, only one page is available in the print preview window. Controls on the window
allow you to page through the pages of the text.



Disassembler Print Setup Command

The Print|Printer Setup command displays the Printer Setup dialog box which allows you to
select and configure the printer to be used to print documents in the application.



Disassembler Copy Selected Lines Command

The Disassembler|Copy Selected Lines command copies the Selected Disassembly Text to
the Windows Clipboard thus allowing the user to Paste this text into any other Windows

compatible program.

Text lines are selected in the same way as for printing selected lines of text.
(See Tutorial 5.2) for details on how to select lines of text.




Disassembler Save Command

The File|Save command saves the disassembler text to an ASCII text file. The default name
of the saved file will be the original name/path of the disassembled file with an “.alf”
(Assembler List File) extension. This file can be used in a word processor such as MS Word
for further editing, searching and formatting. The default filename/path can be overridden by

the user.



Text Search Find Command

The Search|Find command searches the disassembled text for a pattern. The command
displays the Find dialog which controls the search process. Options in the dialog determine
whether the case of characters is significant, and whether the search should be conducted

forwards or backwards through the document. As each match is found, it is highlighted in
red in on the screen.

NOTE: Text searches on large files may take a long time -- be patient.



Text Search Next Command

The Search|Find Next command repeats the last Find operation.



Goto Goto Code Start Command

The Goto|Goto Code Start Command sets the disassembled text to the start of the code

listing. This is not necessarily the start point for the execution of the subject program. (See
Goto Program Entry Point)



Goto Goto Program Entry Point Command

The Goto|Goto Program Entry Point Command sets the disassembled text to the program
entry point code. This is the start point for the execution of the subject program. When
using a debugger program, a breakpoint may be set here to trap beginning of the program
execution.

If the code location (ie. :XXXXXXXX or :XXXX.XXXX of the program entry point is set to the
top line of the display by using the Scroll Bar or pressing the Line Down key, the status bar
at the bottom of the screen will give information as to the hex offset in the program file
where this code exists. Patching the code byte of this location with a hex editor to a “CC”
value will place an “INT 3" instruction which will cause the program to “break” automatically
when used with a debugger. Of course the original value of the patched byte would then
have to be reinstated to continue the debug.

NOTE: Program Entry Points are only valid for 32 bit PE and 16 bit NE files. This command is
disabled if no valid PEP exists.



Goto Goto Page Command

The Search|Goto Page Command sets the disassembled text to the page selected from the
Goto Page Dialog. The Current Page is displayed when the Dialog is initialized. Page numbers
entered that are greater than the total pages available will goto to the last page.



Goto Goto Code Location Command

The Goto|Goto Code Location Command sets the disassembled text to the Code Location
Offset (32 Bit) or Code Location Segment.Offset (16 Bit) selected from the Goto Code
Location Dialog. The Last Code Location goto point that was entered is displayed when the
Dialog is initialized. The initialization value for the first time the Dialog Box is opened after a
file is disassembled is the lowest valid Code Location goto Value. Code goto points entered
that are greater than or less than the lowest and highest valid values are automatically
clamped. Valid in-range values that are entered that are not valid Code Locations in the
listing are automatically set to the nearest lowest valid value.



Functions Imports

The Functions|Imports displays a List Box with all the disassembled programs identified
Imported Functions listed alphabetically.

Imported Functions are functions that are required to run a program but reside in files other
than the subject program file. Imported Functions in the Disassembled Listing, are
references to Calls to the function. There can be more than, and usually is, one reference.
Imported Functions are usually the result of calls made to Dynamic Link Library files (DLLs).

If there are no Imported Functions identified, the command is disabled. To search for an
Imported Function in the disassembled text, Double Click the Left Mouse Button on the
desired function in the List Box.

NOTE: If a Imported Reference is not found, it is most likely due to the fact that the
disassembler could not properly decode the location of the import reference due to a
mixture of data and code in the object being decoded.

NOTE: Files that are not in the Windows NE or PE format will not have Function Import Data.



Functions Exports

The Functions|Exports displays a List Box with all the disassembled programs identified
Exported Functions listed alphabetically.

Exported Functions are functions that are available to other programs. Exported Functions in
the Disassembled Code Listing show the actual function code. There should be only one
reference in the Code portion of the Disassembler Listing per Exported Function. DLL files
usually have many exported functions. Program {exe} files usually have few if any.

If there are no Exported Functions identified, the Command is disabled. To search for an
Exported Function in the disassembled text, Double Click the Left Mouse Button on the
desired function in the List Box.

NOTE: If a Exported Reference is not found, it is most likely due to the fact that the
disassembler could not properly decode the location of the export reference due to a
mixture of data and code in the object being decoded.

NOTE: Files that are not in the Windows NE or PE format will not have Export Data.



Execute Execute Jump

The Execute|Execute Jump command sets the screen listing to the location specified by the
jump instruction that is on the top line of the screen listing. All direct jumps to the code
object are executed. The command is automatically enabled if a valid jump instruction is in

the top line position. In the case that the jump location is invalid, a message will be posted
after a unsuccessful attempt is made.



Execute Return From Last Jump

The Execute|Return From Last Jump command sets the screen listing to the location of the
last executed Jump. The Hot Keys for this function is the Left Arrow Cursor Key. This
command is only enabled if a valid jump instruction was executed.



Execute Execute Call

The Execute|Execute Call command sets the screen listing to the location specified by the
call instruction that is on the top line of the screen listing. All direct calls to the code object
are executed. The command is automatically enabled if a valid call instruction is in the top
line position. In the case that the call location is invalid, a message will be posted after a
unsuccessful attempt is made. After a call command is executed, the Execute|Return
command can be used to return to the original call location. Call commands can be stacked,
and Return commands will set locations in the order of the calls.



Execute Return From Call

The Execute|Return From Call command sets the screen listing to the location of the last
executed Execute|Execute Call command. Call commands are stacked, and Return
commands will set locations in the reverse order of the calls. The command is
automatically enabled when valid call commands are executed.



Data String Data References

The Data|String Data References displays a List Box with all the disassembled programs
identified string data references listed alphabetically.

If there is no String Data identified, the Command is disabled. To search for a string data
item reference in the disassembled text, Double Click the Left Mouse Button on the
desired string data text in the List Box.

NOTE: Long String Data References are abbreviated in the String Data List Box but are
fully displayed as wrapped text in the disassembler listing.

NOTE: Only Files that are in the Windows NE format, PE format, or .COM files disassembled
as 16 bit, are queried for String Data. This command is disabled for all other file types.



Data Hex Display of Data Object Command

The Data|Hex Display of Data Object displays a List Box with all the Data Object/Segment
data in hexadecimal format. The data is grouped into 1024 byte pages which are selectable
from the list box. The number of pages is dependent on the size of the data Object/Segment.
This command in enabled after a valid disassembly is executed.

NOTE: If there is more than one Page of data in the Data Object/Segment, the Page Select
buttons are automatically enabled.

NOTE: For NE files that have more than one Data Segment, Segment Select buttons are
automatically enabled.




Code Hex Display of Code Data Command

The Data|Hex Display of Code Data displays a List Box with the current page code data in
hexadecimal format. The sarting location is the same as the code location specified at the
top line of the screen. This command is disabled if a valid code location is not available on
the top line of the screen.

NOTE: If a page reference is at the top of the screen, the next line will acitivate this
command if it is a valid code location.)



Window Help table of contents

The Help|Contents displays the help contents page.



Font Select Font Command

The Font|Select Font Command displays a font selection Dialog Box from which the user may
select a text font. W32Dasm uses the Courier New, Regular Style, Size 8, font as a
starting default. This default can be changed using the Save Default Font. command.




Font Save Default Font Command

The Font|Save Default Font Command sets the current selected font (See Select Font ) as the
program default font. W32Dasm uses the Courier New, Regular Style, Size 8, font as a
starting default.



Window Context Sensitive Help

The Help|Context Help creates a cursor that calls up help when clicked over any toolbar or
menu item. The context help cursor is automatically deleted upon return from help or it can
be canceled by using the right mouse button or pressing the keyboard escape key {Esc}.



Window About W32Dasm

Displays dialog box with information about the W32Dasm Application.



Load Process

Loads a disassembled Executable Process into memory and halts execution at the
processess Program Entry Point. Only executable processes can be loaded.

Non executables, such as .dll files can be debugged by first loading or attaching (See Attach
to an Active Process) to an executable process that calls the dll, and then opening the
appropriate dll disassembly.

See Tutorial 6.0




Attach to an Active Process

Attaches a disassembled Executable Process to a currently active process. Only 32 bit
processes can be attached to. Also, certain processes that are part of the Windows operating
kernel are prohibited from being attached to.

Non executables, such as .dll files can be debugged by first loading (See Load Process) or
attaching to an executable process that calls the dll, and then opening the appropriate dll
disassembly.

See Tutorial 10.0




BreakPoint Toggle

Toggles a breakpoint at the code line in the highlight bar. The breakpoint is noted by a bright
yellow highlight when active and dark blue when deactivated (See Below) The F2 key can
also be used to toggle a breakpoint.

Breakpoints can be activated/deactivated from the breakpoint list box by selecting the
breakpoint address and then right clicking.

See Tutorial 9.0




Run Process

Runs a process that is currently loaded in the debugger. The process will run until a
breakpoint is reached or the Pause or Single Step functions are called.

NOTE: Running processes may not stop immediately when the Pause or Single Step
functions are called. Often a Window message must be generated for this to occur since
many programs run in a Message Loop when idle. Moving the mouse in the process
window being debugged will generate a Window message and cause the process to break.

See Tutorial 7.0




Pause Process

Pauses a process running in the debugger

NOTE: Running processes may not stop immediately when the Pause or Single Step
functions are called. Often a Window message must be generated for this to occur since

many programs run in a “Message Loop” when idle. Moving the mouse in the process
window being debugged will generate a Window message and cause the process to “break”.

See Tutorial 7.0




Goto Current Eip

Resets the disassembly to the current instruction pointer when a process is paused or at a
breakpoint condition..

See Tutorial 9.2




Single Step Thru

Single Steps over Call and Repeat functions. Use this function if you want to bypass going
thru the code of a Called function or Iterations of a Repeat function.

See Tutorial 8.0




Single Step Into

Single Steps into Call and Repeat functions. Use this function if you want to examine the
code of a Called function or see the results of iterations of a Repeat function.

See Tutorial 8.0




Auto Single Step Thru

Animates the Single Step Thru Function.

See Tutorial 8.0



Auto Single Step Into

Animates the Single Step Into Function.

See Tutorial 8.0



Terminate Process

Terminates the process currently loaded in the debugger.

See Tutorial 7.0




Debugger Options

Sets defaults for various debugger options.



Clear All Trace Marks

As a process is debugged, code lines that have been single stepped to and codes lines that
have been stopped at due to breakpoints are all marked (traced) in red. This function will
clear all the red trace marks from the disassembly screen display..



Disassembler Options

Sets defaults for various disassembler options..

See Tutorial 1.0



Open Project File

Opens a project file that was previously created by the user. Project files are automatically
created when the user saves the disassembly text. Project files are useful for saving
disassembly time when a file is repeatedly being examined by the user.



Menu References

The Menu References displays a List Box with all the disassembled programs identified menu
references listed alphabetically.

If there are no Menu References identified, the Command is disabled. To search for a menu
reference in the disassembled text, Double Click the Left Mouse Button on the desired
menu reference text in the List Box.



Menu References

The Dialog References displays a List Box with all the disassembled programs identified
dialog references listed alphabetically.

If there are no Dialog References identified, the Command is disabled. To search for a
dialog reference in the disassembled text, Double Click the Left Mouse Button on the
desired dialog reference text in the List Box.



W32Dasm Ver 8.xx Series Debugger Tutorial

Preface

This tutorial will take you step by step thru a typical debugging session
using the W32Dasm Ver 8.xx Series Software. The best way to learn is by doing
and it 1is suggested that you follow this tutorial by actually performing the
example steps on your computer.

NOTE: Your computer screen Resolution should be set to 1024 x 768 x 256 colors

at a minimum to provide enough comfortable window viewing space while running
the W32Dasm debugger.

1.0 Getting Started (Disassemble File Calc.exe)

1.1 Start W32dasm.
1.2 Select “Disassembler Options” item from the Disassembler Menu.

A dialog Box will appear

w32Dasm Options |

[+ Enable Conditional Jurp <P eferences
¥ Enable UnConditional Jump #References
[+ Enable Call xReference

Eanceq

which has enable option check boxes for Call Cross References,
Conditional Jumps, and Unconditional Jumps. Enabling or disabling these
options will will include or not include cross references in the
disassembly text on each line of code that is referenced by a call or
jump instruction.

NOTE: Enabling the cross reference features will substantially increase
the amount of time it takes to disassemble a file. However 1if the
Project File (Exercise 2.0 & 3.0) feature is used for subsequent
disassemblies, this will not be a significant factor.

1.3 Select the “Open File to Disassemble” item from the Disassembler Menu OR
PuE
Press the = toolbar button.

1.4 Select the Windows 95 file “Calc.exe” which should be found in your
WINDOWS Directory and Press Open to begin disassembly of the file.



W32Dasm will now disassemble Calc.exe. Note the time it takes for the
disassembly process for comparison with the time that will be noted in
Exercise 3.0.

NOTE: If the disassembly text appears as “Garbage
Characters” on the screen, you need to select and save a
default font which works on your system. To do this, select
Font from the Disassembler Menu. A secondary menu choice
will appear that has both a Select Font and Save Default
Font Choices. Use the Select Font to find a font which works
best with your system. When you have the proper font
selected, use the Save Default Font to make it your
automatic default.

2.0 Save The Disassembly Text and Create A
Project File

In this exercise you will save the disassembly text to an ASCII “.alf”
file and create a Project “.hpj” file which can be used to quickly input
the disassembled text into W32Dasm without going thru the process of
disassembly. The Project files are especially useful when you are
repeatedly analyzing large files which take a long time to disassemble.

2.1 Select “Save Disassembly Text File and Create Project File” from the

En
Disassembler Menu OR press the = toolbar button.

2.2 The Save As Dialog Box wil appear with the default save filename set to
the disassembled file name with an .alf extension. The default Project
File Directory DRIVE:\W32DASM DIRECTORY NAME\WPJFILES should also be
set.

It is recommended that you use the default .alf file name and default
project directory for your files. When the .alf file is created, a .hpj
file will also be created automatically. These two files should always
reside in the same directory in order to work properly. Also, the .alf
and .hpj files should not be modified by the user. If you want to edit
the disassembler text that resides in the .alf file, make a copy and
rename the file.

Press the OK button to save the dissasembly and project files.
3.0 Open an Existing Project File

In this exercise you will open the Project “.hpj” file which was saved
in Exercise 2.0.

3.1 Select “Open Project File” from the Project menu. The file calc.hpj
should as a selection in the Dialog Box. Select this file, and press OK.

3.2 The disassembly of calc.exe will now load. You will notice that the time



to load the project file is much faster than the time it took to
initially generate the disassembly in Exersize 1.0.

4.0 Disassembly Text Navigating

In this exercise you will learn how to navigate thru the disassembly
text listing using W32Dasms search and goto functions.

4.1 Goto Code Start: By pressing the Eﬁftoolbar button (4th from the left on
the toolbar) OR selecting the “Goto Code Start” from the Goto Menu OR
Pressing Ctrl S, the disassembly listing will be set to the beginning of
the code listing. The light blue highlight bar is where the listing is
focused. The user can change the position of the highlight bar by double
clicking on any text line or by holding the Shift Key while pressing the
Up or Down arrow keys. It is suggested to set the highlight bar
somewhere near center of the display in order to view the code before
and after the selected line.

Note that the beginning of the code listing is not necessarily where the
code begins execution. The execution start point is called the Program
Entry Point and will be discussed next.

4.2 Goto Program Entry Point: By pressing the ﬁh toolbar button (5th from
the left on the toolbar) OR selecting the "Goto Program Entry Point"
from the Goto Menu OR Pressing F10, the disassembly listing will be set
to the Programs Entry Point. This is where the programs main execution
begins. It is also where the debugger will automatically stop when it
first is loaded with a program.

4.3 Goto Page: By pressing the'}E toolbar button (6th from the left on the
toolbar) OR selecting the "Goto Page" from the Goto Menu OR Pressing
F11, a dialog box will appear enabling the user to enter a page number
to goto in the disassembly listing.

Goto Page |

i‘

Page #
k.

Cance

£ A

4.3 Goto Code Location: By pressing the ?ﬁdtoolbar button (7th from the left
on the toolbar) OR selecting the "Goto Code Location" from the Goto Menu
OR Pressing Fl12, a dialog box will appear enabling the user to enter a
code address to goto in the disassembly listing.



Goto Code Location [32 Bit) |

Enter [in Hex] the walue of the Code Offzet you want to
goto then prezs OF.

If the Code Offzet entered is less than ar greater than
the available Code Offzet values, it will be automatically
zef to the lowest or highest valid value.

If the Code Offzet walle entered iz in the range of walid
Code Offset values but not an exact match, the nest
lowest value will be zelected autoratically.

Code Offzet [Hex]
Cance

The address format is in hexadecimal. With calc.exe loaded in the
disassembler, set the location in the dialog box to 40755B and Press OK.
The listing should now be set at code address :0040755B which is a je
004076Ce instruction. Notice also that the highlight bar turns green.
The green color indicates that the je instruction is a valid jump
instruction to execute a TEXT JUMP (See Exercise 4.4).

Execute Text Jump: The Execute Text Jump function is only active

when a valid jump instruction is positioned on the highlight bar. The
highlight bar will turn green and the Jump To toolbar will activate when
a valid condition exists. If exercise 4.3 was done properly you should
now be at code location 0040755B in calc.exe and the highlight bar
should be green.

EA|URS oft W32Dasm Ver 8.7 Program Dizaszembler/Debugger =] E3

Dizaszembler Project Debug Seach Goto  Execute Text  Functions  HexData HBefs Help

2B[BS (ot Td

:0040754C S2EOQDO4000 rush 0040D0OEQ _:J

* Reference To: EEBMEL3IZ. GetModuleHandled, Ord:010Eh
|

:00407E51 FF1E20EZ4000 Call dword ptr [0040EZ30]
-004075E57 SEFE wov edi, eax
00407559 SE5FF test edi, edi
t00407EEE OFE4&6D010000 je 00407&5CE
|
* Possible StringData Bef from Data 0bj —-="LCMapStringll"
|
t0040756l S2FODO4000 rush 0040D0F0
* Beference To: EHEDMELZE CGetProciddress, Drd:01z2Ch -_IIJ
1|| 3

| Line:13923 Pg 181 of 276 Code D ata @ 00407558 @0ffzet O000855BH in File:Calc. exe

Jump
By pressing the toolbar button (8th from the left on the toolbar) OR
selecting the “Execute Jump” item from the Execute Text Menu OR pressing
the Right Arrow key, the disassembly listing will goto the location



specified by the jump instruction. In this example the listing should
goto code location :004076CE which is a xor eax, eax instruction.

EA|URS oft W32Dasm Yer 8.7 Program Disassembler/Debugger M=l E3

Dizazzembler  Project Debug Search Goto Execute Tewt Function:  HewxData Befs Help

e e e e e

- 00407605 56 push esi -]
100407606 ES3E150000 call 0O040SCOE
:004076CE 830404 add esp, 00000004

* Referenced by a (Mnconditional or (Clonditional Jump at Addresses:
| 0040755 (C) , 00407501 (C), :0O04075ED(C), 00407537 (C), 00407551 (C)
|

tO04075CE 3F3CO0 Haor eaM, =ax

* RBeferenced by a (Mnconditional or (Clonditional Jump at Addresses:
| -00407E5BD (M) , 00407602 (C), :0040776E (1)

|

s004075D0 5D pop ebp

004076l SF pop edi _ILI
4| I 3

| Line: 14056 Pg 183 and 184 of 276 Code Data @:004076CE @0ffzet O0008ACER in File:Calc.exe

To return to the original jump location see Exercise 4.5.

Return From Last Jump: The Return From Last Jump function is only active

- -
when a Execute Jump action was performed. (See Exercise 4.4). The EM
toolbar will be activated when this condition exists. By pressing the
toolbar button (9th from the left on the toolbar) OR selecting the
“Return From Last Jump” item from the Execute Text Menu OR pressing the
Ctrl Left Arrow key, the disassembly listing will return to the location
of the last executed text jump.

Execute Text Call: The Execute Text Call function is only active
when a valid call instruction is positioned on the highlight bar. The

highlight bar will turn green and the toolbar will activate when a
valid condition exists. Use the goto code location function to set the
listing to code address 0040751D. The listing should now be set at code
address :0040751d which is a call 004073D4 instruction. The highlight
bar should also be green and the Call toolbar button should be active.



FA|URS oft W32Dasm Yer 8.7 Program Disassembler/Debugger M=l

Dizazzembler Project Debug Search Goto Esecute Test Functions HexData Hefs: Help

e T e s (5

e e o o e [ 1o e | 2 [ = e [ =
|-00407452a(C) . 00407443 (C) _:J
|

:00407E50E S&C1lEEO4 shr =i, 04

00407512 SA00 push 00000000

100407514 FFYEOC push [ebp+0C]

-00407517 OFEFF& wmovsH esi, si

0040751 FF7E0OE push [ebp+08]

t00407E1Tr EREZFEFFFF call 00407304

100407527z DDEDFS fstp oquord ptr [ebp-08] =
t00407 525 83C400C add esp, 0000000C

:00407528 S1EEFEOQZOOO0 sub esi, O00003FE

* RBeferenced by a (Mnconditional or (Clonditional Jump at Addresses:
|-0040742C (1) . 00407500 (1T) il
4 3

Line: 13883 Pg 181 of 276 Code Data @:00407510 @0ffset 000631 Dh in File: Calc. exe

By pressing the Eﬂ toolbar button (10th from the left on the toolbar)
OR selecting the “Execute Call” item from the Execute Text Menu OR
pressing the Right Arrow key, the disassembly listing will goto the
location specified by the call instruction. In this example the listing
should goto code location :004073D4 which is a push ebp instruction.

ﬂ URSoft W32Dazm Yer 8.7 Program Dizsassembler/Debugger M=]
Dizazzembler  Project Debug Search Goto Execute Tewt Function:  HewxData Befs Help
2l= B e 1o gt/ Imp Otz M i |
L e Rl e B R R e | (5 5% |2 | | [ =
|:004073AE (1), :004073B6 (1), :004073CL (), :004073CC (1) ﬂ
|
-00407303 C3 ret
* Referenced by a CALL at Addresses:
| -oo407501 , 00407E51D
|
-00407304 EE rush ebp
t00407305 SE44z240C wov eax, dword ptr [esp + 0C] 1
tQoo40730e SEBEC wov ebp, esp
-0040730E S83ECOS sub esp, 00000003
t0040730E SE4D02 mov ecH, dword ptr [ebp+08]
t004073E1 894 5FC wov dword ptr [ebp-04], =ax
tO04072E4 S8E4510 wov ead, dword ptr [ebp+l0] il
4 [
Line:13685 Pg 178 of 276 Code Data (00407304 (20ffset 0000670 dh in File: Calc. exe

To return to the original call location see Exercise 4.7.

Return From Last Call: The Return From Last Call function is only active

when a Execute Call action was performed. (See Exercise 4.6). The Em
toolbar will be activated when this condition exists. By pressing the
toolbar button (1lth from the left on the toolbar) OR selecting the
“Return From Call” item from the Execute Text Menu OR pressing the Left



Arrow key, the disassembly listing will return to the location of the
last executed text call.

Finding Imported Functions: To search the listing for imported functions

Imp
press the toolbar button (12th from the left on the toolbar) OR
select “Imports” item from the Functions Menu. A dialog box

W3i2Dasm Alphabetical List of Imported Functions !El
Ta Search Dizazsembly for Function, Double Click on Test Carcel Search

G032 Delete0bject -
GDIZE2 GetDevicelaps

G032 GetStockObject

G032 GetT extE stentPoinkd,

G032 GetT exttdeticsd,

G032 SelectObject

G032 5etBkMode

G032 S5etT extCalor

GDIE2. TextOutd

FERMELZZ ExitProcess

FERMEL32 GetACP

KERMEL3Z GetCommandLined,

KERMELZZ GetCPlInfa

KERMEL3Z GetErnvironmentStrings

KERMEL3Z GetlastEror

FERMEL3Z GettaduleFileM armed,

KERMELZZ GettoduleH andled, ;I

Copp Al Copy Wiew I

will appear which lists all the import function references found by
W32Dasm in the code. By double clicking on any of these items, the
disassembly will be set to the location of the function reference. NOTE:
there can be more than one reference for and imported function in the
listing. Double clicking repeatedly on the same function will cycle thru
all the found references for that function. In this example, double
click on the first item in the list which should be
GDI32.DeleleteObject. The listing should goto code location :00402ABF
which is a call instruction.

The Import Reference dialog box also has Copy View and Copy All buttons
if you wish to transfer the visible or entire contents of the list box
to a text editor of your choice. After pressing the copy button, go to
your text editor a use the paste function to transfer the text.

Finding Exported Functions: To search the listing for exported functions

press the toolbar button (13th from the left on the toolbar) OR
select “Exports” item from the Functions Menu. A dialog box will appear
which lists all the export function references found by W32Dasm in the
code. By double clicking on any of these items, the disassembly will be
set to the location of the function reference.

. .
Note: Calc.exe does not have any exported functions therefore the BFn is



5.0

not active. Try disassembling a .DLL file which should always have
exported functions.

The Export Reference dialog box also has Copy View and Copy All buttons
if you wish to transfer the visible or entire contents of the list box
to a text editor of your choice. After pressing the copy button, go to
your text editor a use the paste function to transfer the text.

Finding Other References: To search the listing for MENU, DIALOG or

STRING DATA references press the , , Or, toolbar button OR select the
desired item from the item from the Reference Menu. A dialog box will
appear which lists all the references found by W32Dasm in the code. By
double clicking on any of these items, the disassembly will be set to
the location of the reference. NOTE: there can be more than one
reference for any reference item in the listbox. Double clicking
repeatedly on the same reference will cycle thru all the found
references.

Each Reference dialog box also has Copy View and Copy All buttons if you
wish to transfer the visible or entire contents of the list box to a
text editor of your choice. After pressing the copy button, go to your
text editor a use the paste function to transfer the text.

In this exercise you will learn how to navigate thru the disassembly
text listing using W32Dasms search and goto functions.

Printing/Copying Disassembly Text

Standard Printing: By pressing the 'ﬂ toolbar button (the last one on
the toolbar) OR selecting “Print” from the Disassembler Menu, a standard
Windows print dialog box will appear which enables the user to print
selected pages or all of the disassembly listing.

Printing/Copying Selected Lines of Text: W32dasm also allows printing or
copying of individual lines of disassembler text. This is accomplished
by left clicking on the far left margin of the line of text you wish to
print. A small red dot should appear in the left margin. To select
multiple lines, left click again on the other extreme of the range of
lines you wish to print while holding the SHIFT key. A series of red
dots indicating the range of selected lines will appear in the left hand
margin.



EA|URSoft W32Dasm Yer 8.7 Program Dizazzembler/Debugger M=l E3

Dizazzembler Project Debug Search Goto Esecute Test Functions HexData Hefs Help
2B(Ea ) [l

* Beferenced by a (Mnconditional or (Clonditional Jump at Address:

| -00406086&(C)
|
@ 00405084 2Ale mov dl, byte ptr [esi]
@ 004056050 S4DE test dl, dl
@ :0040&05E 7428 qe 00408088 ]
o 00405060 OFBEDEZ movex edx, dl1
@ 00406063 S49283C64000 test byte ptr [edx+0040CE53], bl
@ 00406069 7400 Je 00406077
@ 00406068 FFOLl inc dword ptr [ecx]
@ 00405060 25CO test eax, =ax
t0040806F 7408 Je 00408077

s0o408071 24lé mov dl, byte ptr [esi] _ILI
4 I I 2

| Line: 10634 Pg 139 of 276 Code Data @ 00406060 @0 ffset 000054600 in Fils:Calz. exe

To Print:

Select Print via the toolbar 'ﬂ or Disassembler Menu and select be sure
the Selection checkbox is checked. Press OK to print.

To Copy:

Select Copy Lines of Text via the toolbar ﬂ+ﬂ or Disassembler Menu. You
can now use the Paste function in any Windows compatible program to
transfer the copied text.

6.0 Loading a 32 Bit Disassembly into the
Debugger.

In this exercise you will load and initialize calc.exe into the
debugger.

6.1 Disassemble the program calc.exe.

6.2 Select the “Load Process” item from the Debug Menu OR Press Ctrl L. A
dialog box will appear which allows inputting an optional command line
parameter to the program being loaded. You may enter optional command
line text at this time. For now, just Press the LOAD button.

Calc.exe will now load into the debugger and the main W32Dasm window
will move and resize while two new debugging windows (See Figs 1 & 2)
are be created. These Windows will be referred to as the Lower Left Hand
Debugger Window and Lower Right Hand Debugger Window. After initializing
the calc.exe program the program and disassembly listing will be halted
and set at the Program Entry Point code location. For calc.exe the PEP



should be set to Code Address :0040534E.

The Lower Left Hand Debugger Window has various List boxes that contain
CPU Register Data, CPU Flag Data, Breakpoints, Active DLLs, Code Segment
Registers, Trace History, Event History, and User Set Memory Addresses,
and Data Displays. Data Display 1 has four data format buttons (DWOPRD,
WORD, BYTE, and Instruction) from which you can choose the way data is
displayed. The source of the data is selected by the buttons to the left
of the display. Data Display 2 shows all four data formats at once and
also has a button to select the source address from the Data Display 1.
Two user input address boxes are also available to allow the user to
choose specific memory addresses to look at. This window also has some
debugger function buttons which will be explained later in this
tutorial.

Eip:0040534E iz in Module: CALC_EXE

Regs _I;de oI Tg& £ A P C #Processes: 001
eip=0040534a ITIFITITITIFIFITIF EThreads=: |00l

eax=004053de

ebx=00540000 [T Source For Data Disp 1 Cnpyl

_ g Begment Reg
ecx=8lel0f£0 || eipll [esp-00000014] — OOO0O0L3E  2... | ——
EDX=81611030 ||/ leaxz| [esp-00000010] - LE£fSSh3E  7... cs=00000137

d=s=0000013f
=s==0000013f
es=0000013f
f==0000Z2137

Teer iddr 1 | 2dilfl (esp+00000004] - 51614330 0OTa. gs=00000000

IDD4DDDDD vI ebp |l [esp+000000058] - Sl6l0£fd40 . .a. EDt= ':C'I:".‘."I Clearl

ezi=81610£d0 ebx|l [esp-0000000C] - bEf74277 wB..
edi=2156142320 ecx |l [esp-00000003] - 81611030 O.a.
ehp=00c4 £f£72 edzll [esp-00000004] - bBEfS5SF43 H__ .

hffa2f7h

esp | [esp+0000000C] - 00540000 .. T. - -
TUal _ one Set
— o = [esp+00000010] 62605142 Caleo ail
UAZ || [esp+00000014] - 45554500 _EXE ;J
|nn40534e =
[in 0ff] Mode-»[TWord Word| Byte | Code | Dal
r——Zource For Data Disp =2 Cnpgrl Aeotiwve DLLs Egn:ﬂ
|Disp 1 |hddress: BFF28F7E is in Module: HEPMEL2Z.DLL ADVAPIZZ DLL &
UAL char [000]:"" COMCTL3Z.DLL
— DWOERD : ebd2458%, WORD:4589, EYTE: 89 GLI3Z.DLL
CODE: mov dword ptr [ebp-22]1, =eax I-pr.;..: Create Erk

|_Prn:n: Exit EBrk
ITrIIIEIEIl Process @ Program Entry Point, eip:0040534e CC'E]E“-Thrd Create Brk
[T Thrd Exit Brk
[ DLL Load Brk
Modi fvr Datal Goto Current Eipl [ DLL UmLoad Erk

Fig 1. Lower Left Hand Debugger Window

IEVDDD'? Loading DLL 3HELL3Z.DLL @ addr:?fe00000 ﬁ ':':'EEI

The Lower Left Hand Debugger Window has a secondary code display plus
various debugger control buttons which will be explained later in this
tutorial.



This Code i=s in Module CALC. EXE

- 10040532338 Jjmp CALC. 0040534F

1004053230 mowv ecx, O0000000ZF

004053472 mov dl, byte ptr [0040C0ES]
100405348 mowv byte ptr [eaxdtecx], dl
0040524 ret 0002

t0040534E mov eax, f=:
100405354 push ebp
1004053558 mow ebp, esp
100405357 push FFFFFFFF
D0040535% push 0040830

;J :0040535E push 004085560
< | i
F7Enahle Documented APT Details Eupyl

r'Enable Tnlocumented APT Details APT

r.Enahle Local Function Details Goto Address
r.StDp Luto On APT Patch Cndel

r'Step Into "rep" Instruction Bypass :
Termlnatel
) o 5t
utoStep AutolStep L £
Trto FE a Fe Into Ower DPause Pun
nto TEr
F? F2 F3

Fig 2. Lower Right Hand Debugger Window

You are now ready to use the debugger.

7.0 Running, Pausing & Terminating a Program.

In this exercise you will run calc.exe from the debugger, pause it, then
terminate it.

7.1 To RUN calc.exe from the debugger, Press the RUN button on the lower
right hand Debugger Window OR Press F9. The calc.exe program window
should appear and be fully functional. Memory, CPU Register and Flag
data is displayed in the Lower Left Hand Debugger Window along with
various options on how data is displayed. Active DLLs, Breakpoint info,
Trace History, Event History and Debugger Status is also displayed in
this window.

To PAUSE the calc.exe program, Press the Pause button on the Lower Right
Hand Debugger Window OR Press the Space Bar. The action will stop
program execution somewhere in the programs message loop if the program
was idle at the time of the pause. Exactly where the program pauses in
the code is highly dependent on the program and the function it is
performing when it is paused. Once a program is paused, you can use the
single step debugger features (See Exercise 8.0).

To TERMINATE the calc.exe program you can use the programs normal exit
procedure or you can Press the Terminate button on the Lower Right Hand
Debugger Window OR Press Ctrl T. When terminating the program using the
normal exit procedure, the Debugger Windows will remain open and display
the last debugger event data which is pertinent to how the program
exits. When using the Terminate feature of the debugger, you will be



given a warning message about the termination from which you can cancel.
If you choose to terminate, the program will exit and the debugger
windows will automatically close.

8.0 Single Stepping a Program.

In this exercise you will use the four single step functions of the
debugger.

8.1 Reload the calc.exe program into the debugger.

8.2 After the program loads and is stopped at the Program Entry Point, you
can execute each program instruction one at a time by Pressing the
Single Step Into or Single Step Over buttons on the Lower Right Hand
Debugger Window. The F7 and F8 keys can also be used. The difference
between Single Step Into and Single Step Over is that Single Step Into
will execute every instruction in sequence whereas Single Step Over will
“Jjump” over repeat functions such as rep movsb, and also jump over code
in Call functions. NOTE that many API functions will be jumped over by
default no matter if Single Step Into or QOver is used in Windows 95.
Windows NT will step thru most all APIs. To avoid stepping into repeat
instructions while still using the Single Step Into buttons, you can
check the box marked Step Into rep Instruction Bypass on the Lower Right
Hand Debugger Window.

8.3 As you single step thru the program you can observe changes to CPU
registers and memory as each instruction is executed.

8.4 The Auto Single Step Into (F5) and Auto Single Step Over (F6) buttons
Animate the single step functions. To stop the Auto functions you can
either press the Pause, Single Step Into, Single Step Over, or Run
buttons.

9.0 Setting & Activating Program Breakpoints

In this exercise you will learn how to set breakpoints and activate and
deactivate them.

9.1 Load the program calc.exe into the debugger.

9.2 Using the goto code location function set the disassembly to code
location 403198. This location has a cmp eax, 00000131 dinstruction in
it. You could also have gotten to this instruction by using the Menu
Reference search function by double clicking on the “Menu: SM, Item:
"Scientific"" ref. (See Tutorial 4.10).

This code is part of the routine that determines what menu function is
selected from the calc.exe VIEW Menu. While the highlight bar is on the
code line for address :00403198, you can set a program breakpoint by
Pressing the F2 key OR holding the Ctrl Key while Left Clicking the
mouse in the far left hand margin of the code line. Using the mouse does
not require that the desired code line be in the highlight bar.

When the breakpoint is set the far left hand margin will turn Yellow,



indicating it is a breakpoint.

EA|URS oft W32Dasm Yer 8.7 Program Disaszembler/Debugger M= E3
Dizazzembler Project Debug Seach Goto  Execute Tewt Functionzs HexData HBefs Help

28| % [0,

* Posgsible Pef to Merm: 5M, Item: "about Calculator' _:J
|

100403180 3DZFO010000 cmp eax, O00001ZF

100403192 OFE47C0O&0000 je 00403814 =

* Posgsible PBef to Mernu: SM, Item: '"Scientific"

|
00403198 3D31010000 cmp eax, 00000131
1004021590 QF2ESC070000 jb 00403233F

* Possible Bef to Merm: 5M, Item: "Standard"
|

t004021A3 FD32010000 cup eax, 00000122
t00403214A8 OFESEE0&0000 jbe 004035214 —ILI
1|| 4

| Line:4497 Pg 58 of 276 Code Data (200403198 @0fFzet 000025930 in File:Calc. exe

If the breakpoint line is not in the highlight bar, the whole line will
be displayed as yellow. Also note that the Breakpoint Address is now
displayed in the Breakpoint display window in the lower left hand
debugger window. It should have a * symbol next to it which indicates it
is an active break point.

EPL= Cnpyl Clead

t00403138*

La

bLotiwve DLL=

Pressing the F2 Key while a breakpoint line is in the highlight bar will
remove the breakpoint. Also, the mouse function can be used to toggle a
breakpoint on and off by left clicking the appropriate code line while
holding the Ctrl Key. For the next step, leave the breakpoint set at
code location :00403198. Reset the disassembly listing to the current
instruction (which is the Program Entry Point in this case) by pressing
the Goto Current Eip button which is at the bottom of the lower left
hand debugger window. This button provides a quick way to get back to
the current instruction after navigating around the disassembly listing.

Now that a breakpoint is set, Press the RUN button (F9) to start
calc.exe running. Now select the “Scientific” item from the calc.exe
View Menu. The debugger should now break at code location :00403198 and
halt program execution.

Breakpoints can also be left at any address in a inactive state. This is
accomplished by selecting the breakpoint address in the breakpoint

display list with the mouse and right clicking on the selection. When a
breakpoint is deactivated, the * symbol will disappear from the address



in the list and the disassembly listing line will turn from yellow to
dark green.

EA|URS oft W32Dasm Yer 8.7 Program Disassembler/Debugger M=l E3
Dizazzembler  Project Debug Search Goto Execute Tewt Function:  HewxData Befs Help

222 [

* Possible Bef to Merm: 5M, Item: "about Calculator' :I
|

100403180 3DZFO010000 cup eax, O000001ZF

100403192 OF847C0O&0000 j= 00403814 1

* Possible Pef to Merm: 5M, Item: "Scientific"
|

.:00403198 3L31010000 cmp eax, 00000131
100403120 OFEZ3C0O70000 jb 00403393F

* Posgsible Bef to Mernu: 5M, Item: "Standard!
|
00403143 3D3E010000 cmp eax, 00000132
004021a28 OF2e6c0s0000 jbe 00403214 _ILI
4| I k

| Line: 4497 Po 59 of 276 Code Data &:004031 98 @0ffzet 00002593 in File:Calc. exe

The breakpoint can be reactivated by repeating the above procedure. If
you need to deactivate all the breakpoints at once you can press the DA
button which is just to the right of the breakpoint display list box.
Press the AA button to activate all the breakpoints. If you want to
delete (Clear) all breakpoints, press the Clear button. A warning
message will appear to verify the Clear action.

GOTO BREAKPOINT LOCATION: You can goto breakpoint locations quickly
in the disassembly listing by Left Double Clicking the mouse on the
Breakpoint Address in the debugger window Breakpoint listbox. The
breakpoint can be Active or Not Active for this feature to work.

AUTOMATIC BREAKS ON EVENT: You can have the debugger automatically
break the program execution for certian events such as when a DLL is
Loaded or Unloaded, When a Thread is Created or Exited, or when a
Process is Created or Exited. This is accomplished by checking the
appropriate checkboxes on the Lower Left Hand Debugger Window.

I_Prn:u: Create EBErk
|_Prcu: Exit Erk
dl-Thrd Create EBrk
] [T Thrd Exit Erk
[ DLL Load Brk

[ DLL Unload Brk

J [IGDIzz.DLL =)

These check boxes can be set to user defaults by selecting the Debugger
Options item from the Debug Menu.



W3iZ2Dasm Debugger Options |

[~ Enable Cammand Line an Load

[+ Debug Only This Process

[ Digplay Program Generated Exceptions
[~ Enable Break on Create Process

[~ Enable Break an Exit Frocess

[~ Enable Break on Load DLL

[~ Enable Break on UnLoad DLL

[T Enable Break on Create Thread

[~ Enable Break an Exit Thread

Canizel |

10.0 Attaching to an Active Process.

In this exercise you will learn how to attach the debugger to a process
that is already running in Windows.

10.1 Start calc.exe running in Windows

10.2 Select the “Attach to an Active Process” item from the Debug Menu OR
Press Ctrl L. A dialog box

Active Process Selection [ _ ]

[T Owerride Imhibit Modules Called
by Selectead

ACTIVE PROCESSES (le and 3Z Bit) Process
#00 (16 Bit) MEGERVIEZ.EME Opened By EERNELZZ . DLL ADWAPIZZ DLL
#01 (32 Bit) EXPLORER.EXE Opened Ev MEGERVIZ. EXE COMCTLZ2Z . DLL
#0Z (32 Bit) TW3IZDASHM. EXE Opened Ey EXPLOREER. EXE GDIZZ_DLL
#02 (16 Bit) SCAPTURE. EXME Opened By EXPLOREER. EXE EEFNEL3Z . DLL
#04 (22 Bit) BUNDLL2Z.EME Opened By EXPLOREER. EXE SHELL2Zz _DLL
#05 (16 Bit) QUICEREZ.EXE Opened Ev EXPLOREER. EXE TSERZZ.DLL

#0& (32 Bit) FLEXICD.EXE Opened Evy EXPLOREER. EXE
#07 (322 Bit) DESFMENU.EXE Opened By EXPLOREER. EXE
#02 (322 Bit) BSYSTRALAY.EME Opened By EXPLOREER. EXE

#09 (16 Eir) mwtask_tsk Opened By MEGEDVIZ. EXE Threads in
: (37 CALC. Opened By EXPLORER. Selected Process
#11 (37 Bic) KEPNELZZ.DLL Opened By nfa None

#lz (22 Bit) MPREXE. EXE Opened By MEGERTIZ_ EXE

Select Process Lo Attach Lo, then Click Attach. -= ATTACH Cancel

NOTELl: 1l& Bit Processes Cannot Be Attached.
NOTEZ: 3 Bit Svystem Based Processes Are Inhibited From Being Attached.

The Inmhibkit Can Be Oweridden By Checking The Owerride Inhibit Box.
NOTE3: W3zDasm Cannot Be Attached To Itself.

will appear which lists all of the active processes currently running on
your computer. This list contains references to both 16 bit and 32 bit



10.

10.

programs. Only 32 bit programs can be attached to. Also, some 32 bit
programs are inhibited from being attached to because they are Windows
system critical and attaching the debugger to them may cause the
computer to crash. However if you want to play explore debugging these
programs, there is an Override Inhibit checkbox in the upper left hand
corner of the Dialog that will allow you to attach to these programs
when the box is checked. See the WARNING below.

The Attach Dialog box also shows what Modules (DLLs) each running
process has called and what Threads each process has created as you
select a process from the main list.

Find calc.exe in the list and select by clicking on the line.

Press the Attach button. Calc.exe will now load into the debugger and
the main W32Dasm window will move and resize while two new debugging
windows are be created. The main difference between attaching and
loading a program into the debugger is that attaching does not stop the
program at the Program Entry Point because this code was already
executed to get it running in Windows. You can break into the program by
pressing any of the Single Step buttons or the Pause button.

WARNING: Once a program is attached to, it will be terminated if W32Dasm
is closed. When attaching to system critical programs, be warned that
pausing them or terminating them will most likely cause Windows to not
operate properly. If this happens, reboot the computer.

11.0 Modifying Registers, Flags, Memory, &
Instructions

11.

11.

In this exercise you will learn how to modify register data, CPU Flag
data, Instructions, and Memory Data with the debugger

Load calc.exe into the debugger. Do Not RUN Program

Press the Modify Data button which is in the lower left hand debugger
window. A Modify Data Dialog will popup.



11.

11.

Modify Data [_ [[]]

CPT Flags

Click Flag Walue to Toggle.
Changes are Highlighted

il ol Y LY

CPT Pegisters

Mode-+ (% Dlord { Word r-Byte

Enter Walus -> IEIEIIIIIIIIIIIIIIIIEI vI

Press to Eip [[0040534E
Change eax |[0040534E
Reg/Mem to ebx [0ocs40000
Value ecx [[21c0E0Z0
Entered edx [21c0E0E0
Ahove. e=zi [s1c0E000

Changes are ogj |[s16278D4
Highlighted | app [00caFF78
esp [[0os4FE3C
Tal || 00905441
Taz |ooonaled
Depi||EEDE4E2S
Mem ||00000000

= = = = = = B =M = =M A

Next Mem LDCI Mem Loc
IEIIII4IIII2IIIEIEI vI

Prev Mem LDCI

|-I-II:IP Instruction @ eip

Close

Beszet A1l | Modify

Modify Flags: To change the value of a CPU flag, left click on the
desired flag value. It will toggle from O to 1 on each click. When the
value of the flag is not the same as the original value, it will be
highlighted in blue. No modifications actually take place until you
Press the Modify button on this dialog.

RESETTING FLAG DATA: At any time before you press the Modify button, you
can RESET all the flags to their original value by pressing the R button
in the Flags data area.

NOTE: The T flag cannot be modified.

Modify CPU Register Values: To change the value of a CPU register, enter
the desired value in the Enter Value-> List Box. Depending on the Mode
Selected by the Mode checkboxes, you have the option of changing the
DWORD register (ie: Eax) or WORD register (ie: ax) or BYTE register (ie:
ah, or al). Press the button of desired register to change its value.
Values changed from the original are highlighted in blue. No
modifications actually take place until you Press the Modify button on
this dialog.

RESETTING REGISTER VALUES: Each register has a R button to reset it to



11.

11.

its original value. You can RESET the data at any time before you press
the Modify button.

Modify Memory Values: To change the (DWORD, WORD, or BYTE) value of a
memory location, enter the desired value in the Enter Value-> List Box
and enter the desired memory address in the Mem Loc List Box. Then press
the Mem button to modify the data. You can also adjust the Memory
Location by pressing the Next Mem Loc or Prev Mem Loc buttons. The value
of the Memory Location will increase or decrease by a DWORD, WORD, or
BYTE depending on the Mode selected in the Mode checkboxes. No
modifications actually take place until the Modify button is pressed.

Data addresses specified by the User Addr 1 and User Addr 2 and Display
2 List boxes on the lower left hand debugger window may also be modified
by pressing the appropriate buttons on the Modify Data dialog box.

RESETTING MEMORY ADDRESS VALUES: At any time before the Modify button is
pressed, you may RESET to the original value by pressing the
corresponding R button.

Modifying Instructions: You can NOP any instruction at the selected Eip
Address by checking the NOP Instruction @ eip before pressing the Modify
button. W32Dasm automatically determines how many NOP instructions to
insert to completely NOP the code line.

To Modify Instructions to any other Code, use the Code Patch Button
located on the Lower Right Hand Debugger Window. This will open the Code
Patcher Dialog Box.

WwiZDasm Code Patcher M= E3
EIF Current Instruction at EIP
IDD4DES4E Imuv eax, dword ptr fs: [00000000]

Enter MNew Instruction Below

| -~
Code Patch Listing Copy |

Close Pemowe Last Line Apply Patch Clear Patch




The address of the code location/s to patch is determined by the
highlighted location in the Lower Right Hand Debugger Window. You can
change the address by (1.) Single Stepping the program, (2.) Use the
Goto Address button or (3.) Use the up/down scroll bars on the Lower
Right Hand Window Code Listing Display. Once you have the code address
you want to change, you can type instructions in the List Box titled
Enter New Instruction Below. When you hit the Enter key, the new
instruction will be listed in the Code Patch Listing display. If the
instruction is invalid or improperly formatted, it will not be entered.
As a general guideline for proper format, look at the main disassembly
listing for examples. Some instructions require that a size (ie: “dword
ptr” or “byte ptr”) be used. All numerical values are to be in HEX
notation. Leading zeros are not required. To clear the entire patch
lisying, press the Clear Patch button. To erase only the last line in
the listing, press the Remove Last Line button.

W3iZDasm Code Patcher Mezsage: Instruction OK M= E3
EIP Current Instruction at EIP
Iun405355 Iin al, dx
Enter MNew Instruction Below
Ip-:-p 2ax j
Code Patch Listing Copy |
:0040534E EO push =ax
100405324 F 53 rush ehx
soo405350 51 push ecx
100405351 2255ES woy dword ptr [ebp-182]1, esp
:0040E%54 F7ES imul eax
Close Bemowe Last Line Apply Patch Clear Patch

When modifing code, you need to be sure that instructions being replaced
are covered by the same number of bytes by the new code. Use the NOP
instructions to fill in bytes that are not used by the new instruction.

When the Code Patch has been composed, you may modify the program code
by pressing the Apply Patch button. You will get a Message Box
confirming your action. If you decide “Yes” the program code will be
modified.



I |
ou Are About To Modify Code Location

0040524E Thiu But Mot Including Location
00405357 ... Are rou Sure’?

Mo |

NOTE 1: Code modifications cannot be done on Write Protected Memory
Areas such as where the KERNEL32.DLL code is placed.

NOTE 2: Code modifications are only displayed in the lower right
debugger window. The main disassembly listing only shows the original
data for the code.

NOTE 3: Code patches are only temporary changes. The original executable
file or DLL file is not modified. To make permanent changes to the
files, use a HEX editor to change the files data bytes at the proper
location. File locations can be determined by looking at the status bar
on the main disassembly window while the highlight bar is on the code
location of interest. The status bar will display the value of the hex
offset into the file where the byte data for that code is located.

EA|URSoft W32Dasm Yer 8.7 Program Disassembler/Debugger M= E3

Dizazzembler Project Debug Search Goto Execute Tewt Functions  HewxData Bef: Help

e e S

100405347 SAlSESCO4000 mov dl, byte ptr [0040C0OES] _:J
100405348 221408 wov byte ptr [eadtecx], dl
:0040534E CZOZ00 ret. 0008

J,f},f******************** PngrEIﬂ. Ent.r]r Pcu.nt. TEEErE LT L

:0040534E &4A100000000 movy eax, dword ptr £s: [00000000]
:0o0405354 L& rush ebp

;00405355 ZBEC wowv ebp, esp

00405357 SAFF rush FFFFFFFF

00405359 &£230464000 push 004045320

:0040535E SE&CE54000 prush 004058550

Q0405383 50 h eax _ILI
2

Al

| Line:3580 Pg 112 of 276 Code Data =@ 0040634E @0 zet 0000474Eh in File:Calc. exe

12.0 Exploring Called Modules (DLLSs).

12.

In this exercise you will learn how to debug DLL files. DLL files cannot
be loaded by themselves. Only executables can be loaded by the debugger.
However, any DLL called by the executable can be debugger after the
executable is loaded into the debugger.

Load notepad.exe into the debugger and press F9 to run notepad.exe.



12.2 Look at the List Box called Active DLLs in the Lower Left Hand Debugger
Window. This List Box has the names of all the DLLs currently active in
the loaded program. If you left Double Click on a name, another dialog
box will popup

DLL Information |
COMDLG32 DLL Statistics
Loy Addrezs: FFEBOOO0
High Addrezs: FFECEOON
Size: 11050592 Bytes

Process Uzage Count: 1

Dizazzembly Mot Loaded, Load MNow?

giving details about the DLL. This dialog also gives you the option of
disassembling the DLL and attaching it to the debugger.

12.3 Press the YES button on the dialog box that pops up. COMCTL.DLL will now
disassemble and load. If COMDLG32.DLL was previously disassembled and
saved as a project file, the project file will be called. This saves the
time it takes to disassemble the file.

12.4 You can now use the Debugger on the DLL.

NOTE: Certain System DLLs such as KERNEL32.DLL DLL cannot accept breakpoints
or have their Memory modified because they are in READ ONLY protected
memory areas.

12.6 Press the toolbar and double click on GetOpenFileNameA. The
disassembly listing should goto code location :7FEB1162 which is a push
00000017 instruction. This code is the beginning of the COMDLG32.DLL
function GetOpenFileNameA. Now Press F2 to set a breakpoint at this
location.

12.7 Now goto the Notepad.exe programs File Menu and select Open. The
debugger should now halt notepad.exe execution and break at the
GetOpenFileNameA code location :7FEB1162 in COMDLG32.DLL.

13.0 The WIN API Detail Feature

In this exercise you will learn how to use the WIN API Detail feature of
W32Dasm.

13.1 W32Dasm has a feature which allows the user to look at the details of
many WIN API Functions. Almost all of the generally used function from
KERNEL32, ADVAPI32, SHELL32, COMCTL32, COMDLG32, USER32, and GDI32 are
available. Also, there are options to display UnDocumented API Details



13.2

NOTE:

13.3

and Process Local Function Details with a generic type data display. The
generic data shows both Hex Data and String Pointer Data if appropriate.

Load calc.exe into the debugger, but don’t RUN it.

Make sure that the Enable API Details checkbox is checked on the Lower
Right Hand Debugger Window. (This should be checked by default). Also put
a check in the Stop Auto on API checkbox. If this box is not checked,
the auto single step function will continue without stopping when an API
function is reached.

To activate UnDocumented API or Local Function Details, check the
appropriate box/es.

This Code i=s in Module CALC. EXE

- 00405338 Jjmp CALC. 00405342

100405330 mow ecx, O0000000Z

00405347 wow dl, byte ptr [0040C0ES]
100405348 mow byte ptr [eaxtecx], dl
0040534 ret 00085

10040534 push eax
:0040534F push ebx
100405350 push ecx
0040538 ] mow eax, 000000Z3
100405358 nop

;J 00405357 push FFFFFFFF
l | i
F?Enable Documented API Details Enpyl

r.Enahle Tnlocumented APT Details API

r.Enahle Local Function Details Gota Addr954
r'Stnp Auto On APT Patch Cndel

péStep Into "rep" Instruction Bypas s -
i Termlnatel
5t b o
LutolStep Autolten L L
Into FE Over Fe Into | Over e
F? F& F9

Now Press F5 to activate the Auto Single Step Into Function. (You can
also use the manual single step F7, to step thru the code until a API
function is reached).

13.4 The debugger should now auto single step into until the first WIN API

function is reached which is KERNEL.GetVersion at code

location :00405374. A Dialog box will appear that shows the API and type
of data and values input to the API function.

If the Get API Result button in this dialog is pressed, the API function
will run and return the API results in the dialog list box.



13.

13.

WwW32Dasm API Details M=l

API DWORD ArgO0 = GetWersioni{hrgOl) ‘:J
APT Address=00405374, APT Peturn Address=00405374
Argll = {woid)

‘DESULT for API GetVersion
Argid = (DWORD) cO00O000<4

ArgOl (woid)

w
a | 3
I31-:~5E| Get APT Result Copy Text |

You can use the Copy Text button to Paste the dialog text into a text
editor.

Pressing F5 again or manually single stepping will cause the API Details
dialog box to minimize until the next API function is reached. The APT
Details function can be disabled by unchecking the EnableAPI Details
checkbox on the Lower Right Hand Debugger Window.

If the instruction pointer is on a API call function but the API Enable
Details checkbox was not checked, you can activate the API List Window
by checking the API Enable Details checkbox and then press the APT
button in the Lower Right Hand Debugger Window.






