
The Toolbar
The Toolbar is a row of buttons at the top of the main window which represent application commands.
Clicking one of the buttons is a quick alternative to choosing a command from the menu.    Buttons on
the toolbar activate and deactivate according to the state of the application.

Button Action Menu Equivalent

Open File to Disassemble. Disassembler|Open

Save Disassembly to a Text File. Disassembler|Save

Find Text. Search|Find

Copy Selected Dissassmbly Text Lines. Disassembler|Copy Selected Lines

Goto Code Starting Location of Code. Goto|Goto Code Start Point

Goto Program Entry Point in the Code. Goto|Goto Program Entry Point

Select and Goto Specified Page . Goto|Goto Page

Select and Goto Specified Location . Goto|Goto Code Location

Execute Jump Instruction. Execute Text|Execute Jump

Return From Last Jump. Execute Text|Return From Last Jump

Execute Call Instruction. Execute Text|Execute Call

Return From Last Call. Execute Text|Return From Last Call

List Import Functions. Functions|Imports

List Export Functions. Functions|Exports

Display of Data Object in Hex Format. Hex Data|Hex Display of Data Objec/Segmentd

Display of Code Data in Hex Format. Hex Data|Hex Display of Code Data

List and Search Menu References. Refs|Menu References

List and Search Dialog References. Refs|Dialog References

List and Search String Data References. Refs|String Data References

Print the Disassembler Text. Disassembler|Print

Contents
General Information About W32Dasm Version 8.x Series
W32Dasm Information
For the latest W32Dasm update information.
Visit the W32Dasm WEB page at:
http://www/expage.com/page/w32dasm
Debugger Tutorial
Tutorial
Tutorial - 1.0 Getting Started
Tutorial - 2.0 Saving The Disassembly Text and Creating a Project File
Tutorial - 3.0 Open an Existing Project File
Tutorial - 4.0 Disassembly Text Navigation
Tutorial - 5.0 Printing/Copying Disassembly Text
Tutorial - 6.0 Loading a 32 Bit Disassembly into the Debugger
Tutorial - 7.0 Running, Pausing, & Terminating a Program
Tutorial - 8.0 Single Stepping a Program
Tutorial - 9.0 Setting & Activating Program BreakPoints
Tutorial - 10.0 Attaching to an Active Process
Tutorial - 11.0 Modifying Registers, Flags, Memory, & Instructions
Tutorial - 12.0 Exploring Called Modules (DLLs)
Tutorial - 13.0 The WIN API Detail Feature

Commands
Disassembler Menu
Project Menu
Debug Menu
Search Menu
Goto Menu
Execute Text Menu
Functions Menu
HexData Menu
Refs Menu
Help Menu

Toolbar
Toolbar Commands

For information on how to use Help, press F1 or select Using Help from the Help menu.

W32Dasm Version 8.x Series General Information:

This is the Full Version 8.x Series of W32Dasm. It is not to be copied for distribution
or downloaded as shareware.

Platform Notes:
W32Dasm Version 8.xx Series requires Windows 95. Or Windows NT 4.0

It will load and run on Windows NT 3.51 if a Windows 95 or Windows NT compatible
IMAGEHLP.DLL file is placed in the same directory as W32Dasm. With out the newer
file, an error message will appear during the initial load. Also, some dialog formats are
not completely supported by NT 3.5 and some dialog controls will not display properly.

It will also    load on Windows 3.11 with W32s but the debugger operation will be
unpredictable.

Comments, Questions, & Problems:
If you have any Comments (Good & Bad), Questions About or Problems with W32Dasm Ver
8.x, send them to me via Email. (urbie@msn.com)

If you encounter a problem, please provide as much detail as you can about your computer
system, file you were disassembling, operation you were performing, etc. in your description
of the problem.

W32Dasm Series 8.xx New Functionality:
*    * W32Dasm now runs on Windows NT 4.0. (See Platform Notes Above)

New in Version 8.5

* W32Dasm will now disassemble the Intel MMX instruction set.

New in Version 8.7
* Added a Code Patch Function (Instruction Assembler) to the 32 bit debugger.

Windows 32 Bit PE Format Files:
W32Dasm Version 8.x will disassemble 32 Bit Windows programs that are in the Portable
Executable (PE) Format.

For valid Windows 32 Bit PE formats, an assembly code listing will be produced that has
header information describing all Imported and Exported functions in the file. Exported
Functions, Imported Functions and String Data references are color coded on the
screen listing.

Search functions are available to aide in finding text, functions, code, string data, etc.

Imported Functions,    Exported Functions and String Data References are listed
alphabetically in special List Boxes with a search feature.

See:
Imports
Exports
String Data Reference

A    Goto Program Entry Point command is available to quickly find the program starting
point. (Starting points for windows programs are not necessarily at the start of the code
listing).

A    Goto Code Location command is available to quickly goto any valid code location
reference.

Commands for Execute Jump, Execute Call, Return From Last Jump, and Return From Call   
are also available.

Windows 16 Bit NE Format Files:
W32Dasm Version 8.x will disassemble 16 Bit Windows programs that are in the New
Executable (NE) Format.

For valid Windows 16 Bit NE formats, an assembly code listing will be produced that has
header information describing all Imported and Exported functions in the file. Exported
Functions, Imported Functions and String Data references are color coded on the
screen listing.

Search functions are available to aide in finding text, functions, code, string data, etc.

Imported Functions,    Exported Functions and String Data References are listed
alphabetically in special List Boxes with a search feature.

See:
Imports
Exports
String Data Reference

A    Goto Program Entry Point command is available to quickly find the program starting
point. (Starting points for windows programs are not necessarily at the start of the code
listing).

A    Goto Code Location command is available to quickly goto any valid code location
reference.

Commands for Execute Jump, Execute Call, Return From Last Jump, and Return From Call   
are also available.

NOTE: W32Dasm Ver 8.x will automatically find Imported Function Names if the import
DLL files exist either in the Windows System Directory or the Current Directory of the
file being disassembled. If the Import DLL file is not found or does not contain function
names, only the Imported Function Ordinal will be displayed.

Windows 32 Bit LE Format Files:

W32Dasm Version 8.x will disassemble 32 Bit Windows programs that are in the Linear
Executable (LE) Format. (ie: Vxd files and others).

For valid Windows 32Bit LE formats, an assembly code listing will be produced that has
header information describing    the file and its objects. Limited Search functions are
available. Commands for execution of jump, return from jump, call, and return from call
instructions are also available.

Other File Formats:
W32Dasm Version 8.x can also disassemble the byte data in any any file. If the file opened
for disassembly is not in the Windows 32Bit PE, 32Bit LE, or 16Bit NE format, the user will be
given the option to disassemble the opened file from a user specified starting byte offset
into the file.

NOTE: The user has a choice of treating the data in the file as 32 bit assembly code or 16
bit assembly code when disassembling via a checkbox on the popup dialog box that appears
when raw disassembly is the option.

NOTE: W32Dasm automatically detects .COM files and sets the 16 bit option and first code
location value to :0001.0100.

NOTE: Disassemblies of files (Other than .COM files disassembled as 16 bit) not in the
Windows 32Bit PE, 32Bit LE, or 16Bit NE format will not have Data references.

NOTE: Disassemblies of files    not in the Windows 32Bit PE, 32Bit LE, or 16Bit NE format will
not have Import or Export references.

Disassembler Menu

The Disassembler menu provides commands for opening files for disassembly, saving
disassembler text and creating Project files, printing disassembler text, changing printer
/screen fonts, setting disassembler options and exiting the application.

Open File to Disassemble

Opens an existing file for disassembly.

To enable the selection of    any file extension for opening, select All Files(*.*) from the List
Files of Type list box in the Open File Dialog Box.

Save Disassembly Text and Create Project File

Saves the disassembler text to a ASCII file and creates a .hpj Project file. Project files are
used to save time when repeatedly opening large files for disassembly. The default filename
for the text and project files are the original disassembly filename with an .alf (Assembly List
File) extension and .hpj (Hex Project) respectively.

Print Preview

View a sample printout of the current disassembler text.

Print

Sends the disassembler text to a printer. User can select specific pages, lines, or print the
whole listing.

Print Setup

Set printer characteristics, ie Landscape, Portrait, etc.

Copy Selected Lines

Copies Selected Disassembler Text Line/s to the Clipboard.

Select Font

Displays Font Select Dialog from which the user can select fonts.

Save Default Font

Sets the currently selected font to the default startup font.

Clear All Trace Marks

Clears all red trace marks from the screen listing.

Disassembler Options

Sets various disassembler default options.

Exit

Exits the W32Dasm application.

Project Menu

Open Project File

Text

Debug Menu

The Debug menu provides commands to Load or Attach To a 32 bit Executable Process and
DEBUG by using Single Step and Breakpoint Commands.

Load Process

Loads a disassembled process into the debugger

Attach to an Active Process

Disassembles an active process, then attaches it to the debugger.

BreakPoint Toggle

Toggles a breakpoint at the Highlighted Code Line. This function is active only when the
debugger is active.

Run Process

Runs the process currently loaded in the debugger.

Pause Process

Pauses a process that is running in the debugger

Goto Current Eip

Sets the disassembly to the current instruction pointer. (EIP)

Single Step Thru

Single Steps over calls and Repeat functions.

Single Step Into

Single Steps into Calls and Repeat functions. NOTE: Many API Calls are automatically
steppped over by the debugger and cannot be stepped into.

Auto Single Step Thru

Animates the Single Step Thru function.

Auto Single Step Into

Animates the Single Step Into function

Terminate Process

Terminates the process currently loaded in the debugger

Debugger Options

Sets various default options for the debugger.

Search Menu

The Text Search menu provides commands to find and mark selected text.

Find Text

Finds a pattern of text and marks in red on the screen display. This is useful for finding
specific functions in the disassembly text. All code location begin with a semicolon
(ie :004123CB (32 Bit) or :0004.345D (16 Bit)) to uniquely identify them in searches.
Searches can be performed up or down from the current screen location by selecting the
appropriate button in the Find Dialog Box. The text Case Match is defaulted OFF but may
also be activated in the Find Dialog Box.

Find Next

Repeats search of last find operation. The F3 key can also be used for “Find Next”
operations.
   

Goto Menu

Goto Code StartSets Disassembled text to the start of the Code Listing. The F7 or Toolbar
Button can also be used for this function.

Goto Program Entry PointSets Disassembled text to Program Entry Point Code. The F8 or
Toolbar Button can also be used for this function.

Goto Page

Sets Disassembled text to the Page Selected from the Goto Page Dialog Box. The F9 or
Toolbar Button can also be used for this function.

Goto Code Location

Sets Disassembled text to the Code Location Offset Selected (32 Bit) or Code Location
Segment.Offset (16 Bit) from the Goto Code Location Dialog Box. The F10 or Toolbar Button
can also be used for this function.

Execute Text Menu

The Execute Text Menu provides access to the generic jump, call, and return from call
commands.

Execute JumpSets listing to the location specified by the jump instruction that is at the top
line of the screen display.

Return From Last JumpSets listing to the location of the last executed jump instruction.

Execute CallSets listing to the location specified by the call instruction that is at the top line
of the screen display.

Return From CallReturns listing to the location of the most recently executed call (See
Execute Call).

Functions Menu

The Functions Menu provides access to the Import and Export Function List Boxes.

ImportsDisplays the Imported Functions List Box.

ExportsDisplays the Exported Functions List Box.

Hex Data Menu

The Hex Data menu provides access to the Data Object/Segments Hex Display and Hex
display of the code currently displayed on the screen..

Hex Display of Data Object/Segments

Displays the Data Object/Segments in hexadecimal form.

Hex Display of Code DataDisplays the current screen code as Hex data.

Refs Menu

Menu ReferenceDisplays the Menu Reference List Box.

Dialog ReferenceDisplays the Dialog Reference List Box.

String Data ReferenceDisplays the String Data Reference List Box.

Help Menu

The Help menu provides access to the help system and the about dialog.

ContentsHelp topic contents.

Context Help

Context sensitive help.

About

About W32Dasm.

Exiting

To exit W32Dasm, choose File|Exit from the menu. You will be prompted to save any unsaved
disassembly text before exiting.

Printing

There are three commands on the File menu which support printing of disassembled text
from    W32Dasm.    File|Print Setup is used to select and configure a printer device.    File|Print
Preview displays a special preview window which shows how the text will appear when
printed.    File|Print allows for printing all or selected pages of the current displayed   
disassembler text.

File Exit Command

The File|Exit command exits W32Dasm.    If you've modified documents without saving, you'll
be prompted to save before exiting.

File Open Command

The File|Open command displays the Open a File dialog box so you can select a file to
disassemble. If the file selected is not in the Windows 32 bit PE format, 32    bit LE format, or
Windows 16 bit NE format, an option to interpret and disassemble the file as raw 32 bit
assembly code or raw 16 bit assembly code will be enabled. Use the “List Files of Type” list
box to choose the file extensions that will displayed in the file selection box. All Files(*.*) can
be chosen to list all files in the selected Directory.

NOTE: The last selected Directory and FileType selected will be the default the next time the
File Open Dialog is selected.

See Tutorial 1.0

Disassembler Print Command

The Print|Print command prints all, selected lines, or selected pages of the disassembler
text.    Use File|Print Preview to see how the text will be laid out on printer pages.    Use File|
Print Setup to select a printer, and to set printer options.

(See Tutorial 5.0) more more details.

Disassembler Print Preview Command

Disassembler|Print Preview opens a special window that shows how the disassembled text
will appear when printed.    The preview window shows one or two pages of the active
document as they would be laid out on printer pages.    If the Printer is set up for Landscape
printing, only one page is available in the print preview window. Controls on the window
allow you to page through the pages of the text.

Disassembler Print Setup Command

The Print|Printer Setup command displays the Printer Setup dialog box which allows you to
select and configure the printer to be used to print documents in the application.

Disassembler Copy Selected Lines Command

The Disassembler|Copy Selected Lines command copies the Selected Disassembly Text to
the Windows Clipboard thus allowing the user to Paste this text into any other Windows
compatible program.

Text lines are selected in the same way as for printing selected lines of text.
(See Tutorial 5.2) for details on how to select lines of text.

Disassembler Save Command

The File|Save command saves the disassembler text to an ASCII text file. The default name
of the saved file will be the original name/path of the disassembled file with an “.alf”
(Assembler List File) extension. This file can be used in a word processor such as MS Word
for further editing, searching and formatting. The default filename/path can be overridden by
the user.

Text Search Find Command

The Search|Find command searches the disassembled text for a    pattern.    The command
displays the Find dialog which controls the search process.    Options in the dialog determine
whether    the case of characters is significant, and whether the search should be conducted
forwards or backwards through the document.    As each match is found, it is highlighted in
red in on the screen.

NOTE: Text searches on large files may take a long time -- be patient.

Text Search Next Command

The Search|Find Next command repeats the last Find    operation.

Goto Goto Code Start Command

The Goto|Goto Code Start Command sets the disassembled text to the start of the code
listing. This is not necessarily the start point for the execution of the subject program.    (See
Goto Program Entry Point)

Goto Goto Program Entry Point Command

The Goto|Goto Program Entry Point Command sets the disassembled text to the program
entry point code. This is the start point for the execution of the subject program.    When
using a debugger program, a breakpoint may be set here to trap beginning of the program
execution.

 If the code location (ie. :XXXXXXXX or :XXXX.XXXX of the program entry point is set to the
top line of the display by using the Scroll Bar or pressing the Line Down key, the status bar
at the bottom of the screen will give information as to the hex offset in the program file
where this code exists. Patching the code byte of this location with a hex editor to a “CC”
value will place an “INT 3” instruction which will cause the program to “break” automatically
when used with a debugger. Of course the original value of the patched byte would then
have to be reinstated to continue the debug.

NOTE: Program Entry Points are only valid for 32 bit PE and 16 bit NE files. This command is
disabled if no valid PEP exists.

Goto Goto Page Command

The Search|Goto Page Command sets the disassembled text to the page selected from the
Goto Page Dialog. The Current Page is displayed when the Dialog is initialized. Page numbers
entered that are greater than the total pages available will goto to the last page.

Goto Goto Code Location Command

The Goto|Goto Code Location Command sets the disassembled text to the Code Location
Offset (32 Bit) or Code Location Segment.Offset (16 Bit) selected from the Goto Code
Location Dialog. The Last Code Location goto point that was entered is displayed when the
Dialog is initialized. The initialization value for the first time the Dialog Box is opened after a
file is disassembled is the lowest valid Code Location goto Value. Code goto points entered
that are greater than or less than the lowest and highest valid values are automatically
clamped. Valid in-range values that are entered that are not valid Code Locations in the
listing are automatically set to the nearest lowest valid value.

Functions Imports

The Functions|Imports displays a List Box with all the disassembled programs identified
Imported Functions listed alphabetically.

Imported Functions are functions that are required to run a program but    reside in files other
than the subject program file. Imported Functions in the Disassembled Listing, are
references to Calls to the function. There can be more than, and usually is, one reference.
Imported Functions are usually the result of calls made to Dynamic Link Library files (DLLs).

If there are no Imported Functions identified, the command is disabled. To search for an
Imported Function in the disassembled text, Double Click    the Left Mouse Button on the
desired function in the List Box.

NOTE: If a Imported Reference is not found, it is most likely due to the fact that the
disassembler could not properly decode the location of the import reference due to a
mixture of data and code in the object being decoded.

NOTE: Files that are not in the Windows NE or PE format will not have Function Import Data.

Functions Exports

The Functions|Exports displays a List Box with all the disassembled programs identified
Exported Functions listed alphabetically.

Exported Functions are functions that are available to other programs. Exported Functions in
the Disassembled Code Listing    show the actual function code. There should be only one
reference in the Code portion of the Disassembler Listing per Exported Function. DLL files
usually have many exported functions. Program {exe} files usually have few if any.

If there are no Exported Functions identified, the Command is disabled. To search for an
Exported Function in the disassembled text, Double Click    the Left Mouse Button on the
desired function in the List Box.

NOTE: If a Exported Reference is not found, it is most likely due to the fact that the
disassembler could not properly decode the location of the export reference due to a
mixture of data and code in the object being decoded.

NOTE: Files that are not in the Windows NE or PE format will not have Export Data.

Execute Execute Jump

The Execute|Execute Jump command sets the screen listing to the location specified by the
jump instruction that is on the top line of the screen listing. All direct jumps to the code
object are executed. The command is automatically enabled if a valid jump instruction is in
the top line position. In the case that the jump location is invalid, a message will be posted
after a unsuccessful    attempt is made.

Execute Return From Last Jump

The Execute|Return From Last Jump command sets the screen listing to the location of the
last executed Jump. The Hot Keys for this function is the Left Arrow Cursor Key. This
command is only enabled if a valid jump instruction was executed.

Execute Execute Call

The Execute|Execute Call command sets the screen listing to the location specified by the
call instruction that is on the top line of the screen listing. All direct calls to the code object
are executed. The command is automatically enabled if a valid call instruction is in the top
line position. In the case that the call location is invalid, a message will be posted after a
unsuccessful attempt is made. After a call command is executed, the Execute|Return
command can be used to return to the original call location. Call commands can be stacked,
and Return commands will set locations in the order of the calls.

Execute Return From Call

The Execute|Return From Call command sets the screen listing to the location of the last
executed Execute|Execute Call command. Call commands are stacked, and Return
commands will set locations in the reverse order    of the calls. The command is
automatically enabled when valid call commands are executed.

Data String Data References

The Data|String Data References displays a List Box with all the disassembled programs
identified string data references listed alphabetically.

If there is no String Data identified, the Command is disabled. To search for a string data
item reference in the disassembled text, Double Click    the Left Mouse Button on the
desired string data text in the List Box.

NOTE: Long String Data References are abbreviated in the String Data List Box but are
fully displayed as wrapped text in the disassembler listing.

NOTE: Only Files that are in the Windows NE format, PE format, or .COM files disassembled
as 16 bit, are queried for String Data. This command is disabled for all other file types.

Data Hex Display of Data Object Command

The Data|Hex Display of Data Object displays a List Box with all the Data Object/Segment
data in hexadecimal format. The data is grouped into 1024 byte pages which are selectable
from the list box. The number of pages is dependent on the size of the data Object/Segment.
This command in enabled after a valid disassembly is executed.

NOTE: If there is more than one Page of data in the Data Object/Segment, the Page Select
buttons are automatically enabled.

NOTE: For NE files that have more than one Data Segment, Segment Select buttons are
automatically enabled.

Code Hex Display of Code Data Command

The Data|Hex Display of Code Data displays a List Box with the current page code data in
hexadecimal format. The sarting location is the same as the code location specified at the
top line of the screen. This command is disabled if a valid code location is not available on
the top line of the screen.

NOTE: If a page reference is at the top of the screen, the next line will acitivate this
command if it is a valid code location.)

Window Help table of contents

The Help|Contents displays the help contents page.

Font Select Font Command

The Font|Select Font Command displays a font selection Dialog Box from which the user may
select a text font. W32Dasm uses the Courier New, Regular Style, Size 8,    font as a
starting default. This default can be changed using the Save Default Font. command.

Font Save Default Font Command

The Font|Save Default Font Command sets the current selected font (See Select Font) as the
program default font. W32Dasm uses the Courier New, Regular Style, Size 8,    font as a
starting default.

Window Context Sensitive Help

The Help|Context Help creates a cursor that calls up help when    clicked over any toolbar or
menu item. The context help cursor is automatically deleted upon return from help or it can
be canceled by using the right mouse button or pressing the keyboard escape key {Esc}.

Window About W32Dasm

Displays dialog box with information about the W32Dasm Application.

Load Process

Loads a disassembled Executable Process into memory and halts execution at the
processess Program Entry Point. Only executable processes can be loaded.

Non executables, such as .dll files can be debugged by first loading or attaching (See Attach
to an Active Process) to an executable process that calls the dll, and then opening the
appropriate dll disassembly.

See Tutorial 6.0

Attach to an Active Process

Attaches a disassembled Executable Process to a currently active process. Only 32 bit
processes can be attached to. Also, certain processes that are part of the Windows operating
kernel are prohibited from being attached to.

Non executables, such as .dll files can be debugged by first loading (See Load Process) or
attaching to an executable process that calls the dll, and then opening the appropriate dll
disassembly.

See Tutorial 10.0

BreakPoint Toggle

Toggles a breakpoint at the code line in the highlight bar. The breakpoint is noted by a bright
yellow highlight when active and dark blue when deactivated (See Below) The F2 key can
also be used to toggle a breakpoint.

Breakpoints can be activated/deactivated from the breakpoint list box by selecting the
breakpoint address and then right clicking.

See Tutorial 9.0

Run Process

Runs a process that is currently loaded in the debugger. The process will run until a
breakpoint is reached or the Pause    or Single Step functions are called.

NOTE: Running processes may not stop immediately when the Pause or Single Step
functions are called. Often a Window message must be generated for this to occur since
many programs run in a Message Loop when idle. Moving the mouse in the process
window being debugged will generate a Window message and cause the process to break.

See Tutorial 7.0

Pause Process

Pauses a process running in the debugger

NOTE: Running processes may not stop immediately when the Pause or Single Step
functions are called. Often a Window message must be generated for this to occur since
many programs run in a “Message Loop” when idle. Moving the mouse in the process
window being debugged will generate a Window message and cause the process to “break”.

See Tutorial 7.0

Goto Current Eip

Resets the disassembly to the current instruction pointer when a process is paused or at a
breakpoint condition..

See Tutorial 9.2

Single Step Thru

Single Steps over Call and Repeat functions. Use this function if you want to bypass going
thru the code of a Called function or Iterations of a Repeat function.

See Tutorial 8.0

Single Step Into

Single Steps into Call and Repeat functions. Use this function if you want to examine the
code of a Called function or see the results of iterations of a Repeat function.

See Tutorial 8.0

Auto Single Step Thru

Animates the Single Step Thru Function.

See Tutorial 8.0

Auto Single Step Into

Animates the Single Step Into Function.

See Tutorial 8.0

Terminate Process

Terminates the process currently loaded in the debugger.

See Tutorial 7.0

Debugger Options

Sets defaults for various debugger options.

Clear All Trace Marks

As a process is debugged, code lines that have been single stepped to and codes lines that
have been stopped at due to breakpoints are all marked (traced) in red. This function will
clear all the red trace marks from the disassembly screen display..

Disassembler Options

Sets defaults for various disassembler options..

See Tutorial 1.0

Open Project File

Opens a project file that was previously created by the user. Project files are automatically
created when the user saves the disassembly text. Project files are useful for saving
disassembly time when a file is repeatedly being examined by the user.

Menu References

The Menu References displays a List Box with all the disassembled programs identified menu
references listed alphabetically.

If there are no Menu References identified, the Command is disabled. To search for a menu
reference in the disassembled text, Double Click    the Left Mouse Button on the desired
menu reference text in the List Box.

Menu References

The Dialog References displays a List Box with all the disassembled programs identified
dialog references listed alphabetically.

If there are no Dialog References identified, the Command is disabled. To search for a
dialog reference in the disassembled text, Double Click    the Left Mouse Button on the
desired dialog reference text in the List Box.

W32Dasm Ver 8.xx Series Debugger Tutorial

Preface
This tutorial will take you step by step thru a typical debugging session
using the W32Dasm Ver 8.xx Series Software. The best way to learn is by doing
and it is suggested that you follow this tutorial by actually performing the
example steps on your computer.

NOTE: Your computer screen Resolution should be set to 1024 x 768 x 256 colors
at a minimum to provide enough comfortable window viewing space while running
the W32Dasm debugger.

1.0 Getting Started      (Disassemble File Calc.exe)

1.1 Start W32dasm.

1.2 Select “Disassembler Options” item from the Disassembler Menu.

A dialog Box will appear

which has enable option check boxes for Call Cross References,
Conditional Jumps, and Unconditional Jumps. Enabling or disabling these
options will will include or not include cross references in the
disassembly text on each line of code that is referenced by a call or
jump instruction.

NOTE: Enabling the cross reference features will substantially increase
the amount of time it takes to disassemble a file. However if the
Project File (Exercise 2.0 & 3.0) feature is used for subsequent
disassemblies, this will not be a significant factor.

1.3 Select the “Open File to Disassemble” item from the Disassembler Menu OR
Press the toolbar button.

1.4 Select the Windows 95 file “Calc.exe” which should be found in your
WINDOWS Directory and Press Open to begin disassembly of the file.

W32Dasm will now disassemble Calc.exe. Note the time it takes for the
disassembly process for comparison with the time that will be noted in
Exercise 3.0.

NOTE: If the disassembly text appears as “Garbage
Characters” on the screen, you need to select and save a
default font which works on your system. To do this, select
Font from the Disassembler Menu. A secondary menu choice
will appear that has both a Select Font and Save Default
Font Choices. Use the Select Font to find a font which works
best with your system. When you have the proper font
selected, use the Save Default Font to make it your
automatic default.

2.0 Save The Disassembly Text and Create A
Project File
In this exercise you will save the disassembly text to an ASCII “.alf”
file and create a Project “.hpj” file which can be used to quickly input
the disassembled text into W32Dasm without going thru the process of
disassembly. The Project files are especially useful when you are
repeatedly analyzing large files which take a long time to disassemble.

2.1 Select “Save Disassembly Text File and Create Project File” from the
Disassembler Menu OR press the toolbar button.

2.2 The Save As Dialog Box wil appear with the default save filename set to
the disassembled file name with an .alf extension. The default Project
File Directory DRIVE:\W32DASM DIRECTORY NAME\WPJFILES should also be
set.

It is recommended that you use the default .alf file name and default
project directory for your files. When the .alf file is created, a .hpj
file will also be created automatically. These two files should always
reside in the same directory in order to work properly. Also, the .alf
and .hpj files should not be modified by the user. If you want to edit
the disassembler text that resides in the .alf file, make a copy and
rename the file.

Press the OK button to save the dissasembly and project files.

3.0 Open an Existing Project File
In this exercise you will open the Project “.hpj” file which was saved
in Exercise 2.0.

3.1 Select “Open Project File” from the Project menu. The file calc.hpj
should as a selection in the Dialog Box. Select this file, and press OK.

3.2 The disassembly of calc.exe will now load. You will notice that the time

to load the project file is much faster than the time it took to
initially generate the disassembly in Exersize 1.0.

4.0 Disassembly Text Navigating
In this exercise you will learn how to navigate thru the disassembly
text listing using W32Dasms search and goto functions.

4.1 Goto Code Start: By pressing the toolbar button (4th from the left on
the toolbar) OR selecting the “Goto Code Start” from the Goto Menu OR
Pressing Ctrl S, the disassembly listing will be set to the beginning of
the code listing. The light blue highlight bar is where the listing is
focused. The user can change the position of the highlight bar by double
clicking on any text line or by holding the Shift Key while pressing the
Up or Down arrow keys. It is suggested to set the highlight bar
somewhere near center of the display in order to view the code before
and after the selected line.

Note that the beginning of the code listing is not necessarily where the
code begins execution. The execution start point is called the Program
Entry Point and will be discussed next.

4.2 Goto Program Entry Point: By pressing the toolbar button (5th from
the left on the toolbar) OR selecting the "Goto Program Entry Point"
from the Goto Menu OR Pressing F10, the disassembly listing will be set
to the Programs Entry Point. This is where the programs main execution
begins. It is also where the debugger will automatically stop when it
first is loaded with a program.

4.3 Goto Page: By pressing the toolbar button (6th from the left on the
toolbar) OR selecting the "Goto Page" from the Goto Menu OR Pressing
F11, a dialog box will appear enabling the user to enter a page number
to goto in the disassembly listing.

4.3 Goto Code Location: By pressing the toolbar button (7th from the left
on the toolbar) OR selecting the "Goto Code Location" from the Goto Menu
OR Pressing F12, a dialog box will appear enabling the user to enter a
code address to goto in the disassembly listing.

The address format is in hexadecimal. With calc.exe loaded in the
disassembler, set the location in the dialog box to 40755B and Press OK.
The listing should now be set at code address :0040755B which is a je
004076Ce instruction. Notice also that the highlight bar turns green.
The green color indicates that the je instruction is a valid jump
instruction to execute a TEXT JUMP (See Exercise 4.4).

4.4 Execute Text Jump: The Execute Text Jump function is only active
when a valid jump instruction is positioned on the highlight bar. The
highlight bar will turn green and the Jump To toolbar will activate when
a valid condition exists. If exercise 4.3 was done properly you should
now be at code location 0040755B in calc.exe and the highlight bar
should be green.

By pressing the toolbar button (8th from the left on the toolbar) OR
selecting the “Execute Jump” item from the Execute Text Menu OR pressing
the Right Arrow key, the disassembly listing will goto the location

specified by the jump instruction. In this example the listing should
goto code location :004076CE which is a xor eax, eax instruction.

 To return to the original jump location see Exercise 4.5.

4.5 Return From Last Jump: The Return From Last Jump function is only active
when a Execute Jump action was performed. (See Exercise 4.4). The
toolbar will be activated when this condition exists. By pressing the
toolbar button (9th from the left on the toolbar) OR selecting the
“Return From Last Jump” item from the Execute Text Menu OR pressing the
Ctrl Left Arrow key, the disassembly listing will return to the location
of the last executed text jump.

4.6 Execute Text Call: The Execute Text Call function is only active
when a valid call instruction is positioned on the highlight bar. The
highlight bar will turn green and the toolbar will activate when a
valid condition exists. Use the goto code location function to set the
listing to code address 0040751D. The listing should now be set at code
address :0040751d which is a call 004073D4 instruction. The highlight
bar should also be green and the Call toolbar button should be active.

By pressing the toolbar button (10th from the left on the toolbar)
OR selecting the “Execute Call” item from the Execute Text Menu OR
pressing the Right Arrow key, the disassembly listing will goto the
location specified by the call instruction. In this example the listing
should goto code location :004073D4 which is a push ebp instruction.

 To return to the original call location see Exercise 4.7.

4.7 Return From Last Call: The Return From Last Call function is only active
when a Execute Call action was performed. (See Exercise 4.6). The
toolbar will be activated when this condition exists. By pressing the
toolbar button (11th from the left on the toolbar) OR selecting the
“Return From Call” item from the Execute Text Menu OR pressing the Left

Arrow key, the disassembly listing will return to the location of the
last executed text call.

4.8 Finding Imported Functions: To search the listing for imported functions
press the toolbar button (12th from the left on the toolbar) OR
select “Imports” item from the Functions Menu. A dialog box

will appear which lists all the import function references found by
W32Dasm in the code. By double clicking on any of these items, the
disassembly will be set to the location of the function reference. NOTE:
there can be more than one reference for and imported function in the
listing. Double clicking repeatedly on the same function will cycle thru
all the found references for that function. In this example, double
click on the first item in the list which should be
GDI32.DeleleteObject. The listing should goto code location :00402ABF
which is a call instruction.

The Import Reference dialog box also has Copy View and Copy All buttons
if you wish to transfer the visible or entire contents of the list box
to a text editor of your choice. After pressing the copy button, go to
your text editor a use the paste function to transfer the text.

4.9 Finding Exported Functions: To search the listing for exported functions
press the toolbar button (13th from the left on the toolbar) OR
select “Exports” item from the Functions Menu. A dialog box will appear
which lists all the export function references found by W32Dasm in the
code. By double clicking on any of these items, the disassembly will be
set to the location of the function reference.

Note: Calc.exe does not have any exported functions therefore the is

not active. Try disassembling a .DLL file which should always have
exported functions.

The Export Reference dialog box also has Copy View and Copy All buttons
if you wish to transfer the visible or entire contents of the list box
to a text editor of your choice. After pressing the copy button, go to
your text editor a use the paste function to transfer the text.

4.10 Finding Other References : To search the listing for MENU, DIALOG or
STRING DATA references press the , , or , toolbar button OR select the
desired item from the item from the Reference Menu. A dialog box will
appear which lists all the references found by W32Dasm in the code. By
double clicking on any of these items, the disassembly will be set to
the location of the reference. NOTE: there can be more than one
reference for any reference item in the listbox. Double clicking
repeatedly on the same reference will cycle thru all the found
references.

Each Reference dialog box also has Copy View and Copy All buttons if you
wish to transfer the visible or entire contents of the list box to a
text editor of your choice. After pressing the copy button, go to your
text editor a use the paste function to transfer the text.
In this exercise you will learn how to navigate thru the disassembly
text listing using W32Dasms search and goto functions.

5.0 Printing/Copying Disassembly Text
5.1 Standard Printing: By pressing the toolbar button (the last one on

the toolbar) OR selecting “Print” from the Disassembler Menu, a standard
Windows print dialog box will appear which enables the user to print
selected pages or all of the disassembly listing.

5.2 Printing/Copying Selected Lines of Text: W32dasm also allows printing or
copying of individual lines of disassembler text. This is accomplished
by left clicking on the far left margin of the line of text you wish to
print. A small red dot should appear in the left margin. To select
multiple lines, left click again on the other extreme of the range of
lines you wish to print while holding the SHIFT key. A series of red
dots indicating the range of selected lines will appear in the left hand
margin.

To Print:

Select Print via the toolbar or Disassembler Menu and select be sure
the Selection checkbox is checked. Press OK to print.

To Copy:

Select Copy Lines of Text via the toolbar or Disassembler Menu. You
can now use the Paste function in any Windows compatible program to
transfer the copied text.

6.0 Loading a 32 Bit Disassembly into the
Debugger.

In this exercise you will load and initialize calc.exe into the
debugger.

6.1 Disassemble the program calc.exe.

6.2 Select the “Load Process” item from the Debug Menu OR Press Ctrl L. A
dialog box will appear which allows inputting an optional command line
parameter to the program being loaded. You may enter optional command
line text at this time. For now, just Press the LOAD button.

Calc.exe will now load into the debugger and the main W32Dasm window
will move and resize while two new debugging windows (See Figs 1 & 2)
are be created. These Windows will be referred to as the Lower Left Hand
Debugger Window and Lower Right Hand Debugger Window. After initializing
the calc.exe program the program and disassembly listing will be halted
and set at the Program Entry Point code location. For calc.exe the PEP

should be set to Code Address :0040534E.

The Lower Left Hand Debugger Window has various List boxes that contain
CPU Register Data, CPU Flag Data, Breakpoints, Active DLLs, Code Segment
Registers, Trace History, Event History, and User Set Memory Addresses,
and Data Displays. Data Display 1 has four data format buttons (DWOPRD,
WORD, BYTE, and Instruction) from which you can choose the way data is
displayed. The source of the data is selected by the buttons to the left
of the display. Data Display 2 shows all four data formats at once and
also has a button to select the source address from the Data Display 1.
Two user input address boxes are also available to allow the user to
choose specific memory addresses to look at. This window also has some
debugger function buttons which will be explained later in this
tutorial.

Fig 1. Lower Left Hand Debugger Window
The Lower Left Hand Debugger Window has a secondary code display plus
various debugger control buttons which will be explained later in this
tutorial.

Fig 2. Lower Right Hand Debugger Window
You are now ready to use the debugger.

7.0 Running, Pausing & Terminating a Program.
In this exercise you will run calc.exe from the debugger, pause it, then
terminate it.

7.1 To RUN calc.exe from the debugger, Press the RUN button on the lower
right hand Debugger Window OR Press F9. The calc.exe program window
should appear and be fully functional. Memory, CPU Register and Flag
data is displayed in the Lower Left Hand Debugger Window along with
various options on how data is displayed. Active DLLs, Breakpoint info,
Trace History, Event History and Debugger Status is also displayed in
this window.

To PAUSE the calc.exe program, Press the Pause button on the Lower Right
Hand Debugger Window OR Press the Space Bar. The action will stop
program execution somewhere in the programs message loop if the program
was idle at the time of the pause. Exactly where the program pauses in
the code is highly dependent on the program and the function it is
performing when it is paused. Once a program is paused, you can use the
single step debugger features (See Exercise 8.0).

To TERMINATE the calc.exe program you can use the programs normal exit
procedure or you can Press the Terminate button on the Lower Right Hand
Debugger Window OR Press Ctrl T. When terminating the program using the
normal exit procedure, the Debugger Windows will remain open and display
the last debugger event data which is pertinent to how the program
exits. When using the Terminate feature of the debugger, you will be

given a warning message about the termination from which you can cancel.
If you choose to terminate, the program will exit and the debugger
windows will automatically close.

8.0 Single Stepping a Program.
In this exercise you will use the four single step functions of the
debugger.

8.1 Reload the calc.exe program into the debugger.

8.2 After the program loads and is stopped at the Program Entry Point, you
can execute each program instruction one at a time by Pressing the
Single Step Into or Single Step Over buttons on the Lower Right Hand
Debugger Window. The F7 and F8 keys can also be used. The difference
between Single Step Into and Single Step Over is that Single Step Into
will execute every instruction in sequence whereas Single Step Over will
“jump” over repeat functions such as rep movsb, and also jump over code
in Call functions. NOTE that many API functions will be jumped over by
default no matter if Single Step Into or Over is used in Windows 95.
Windows NT will step thru most all APIs. To avoid stepping into repeat
instructions while still using the Single Step Into buttons, you can
check the box marked Step Into rep Instruction Bypass on the Lower Right
Hand Debugger Window.

8.3 As you single step thru the program you can observe changes to CPU
registers and memory as each instruction is executed.

8.4 The Auto Single Step Into (F5) and Auto Single Step Over (F6) buttons
Animate the single step functions. To stop the Auto functions you can
either press the Pause, Single Step Into, Single Step Over, or Run
buttons.

9.0 Setting & Activating Program Breakpoints
In this exercise you will learn how to set breakpoints and activate and
deactivate them.

9.1 Load the program calc.exe into the debugger.

9.2 Using the goto code location function set the disassembly to code
location 403198. This location has a cmp eax, 00000131 instruction in
it. You could also have gotten to this instruction by using the Menu
Reference search function by double clicking on the “Menu: SM, Item:
"Scientific"“ ref. (See Tutorial 4.10).

This code is part of the routine that determines what menu function is
selected from the calc.exe VIEW Menu. While the highlight bar is on the
code line for address :00403198, you can set a program breakpoint by
Pressing the F2 key OR holding the Ctrl Key while Left Clicking the
mouse in the far left hand margin of the code line. Using the mouse does
not require that the desired code line be in the highlight bar.

When the breakpoint is set the far left hand margin will turn Yellow,

indicating it is a breakpoint.

If the breakpoint line is not in the highlight bar, the whole line will
be displayed as yellow. Also note that the Breakpoint Address is now
displayed in the Breakpoint display window in the lower left hand
debugger window. It should have a * symbol next to it which indicates it
is an active break point.

Pressing the F2 Key while a breakpoint line is in the highlight bar will
remove the breakpoint. Also, the mouse function can be used to toggle a
breakpoint on and off by left clicking the appropriate code line while
holding the Ctrl Key. For the next step, leave the breakpoint set at
code location :00403198. Reset the disassembly listing to the current
instruction (which is the Program Entry Point in this case) by pressing
the Goto Current Eip button which is at the bottom of the lower left
hand debugger window. This button provides a quick way to get back to
the current instruction after navigating around the disassembly listing.

9.3 Now that a breakpoint is set, Press the RUN button (F9) to start
calc.exe running. Now select the “Scientific” item from the calc.exe
View Menu. The debugger should now break at code location :00403198 and
halt program execution.

9.4 Breakpoints can also be left at any address in a inactive state. This is
accomplished by selecting the breakpoint address in the breakpoint
display list with the mouse and right clicking on the selection. When a
breakpoint is deactivated, the * symbol will disappear from the address

in the list and the disassembly listing line will turn from yellow to
dark green.

The breakpoint can be reactivated by repeating the above procedure. If
you need to deactivate all the breakpoints at once you can press the DA
button which is just to the right of the breakpoint display list box.
Press the AA button to activate all the breakpoints. If you want to
delete (Clear) all breakpoints, press the Clear button. A warning
message will appear to verify the Clear action.

9.5 GOTO BREAKPOINT LOCATION: You can goto breakpoint locations quickly
in the disassembly listing by Left Double Clicking the mouse on the
Breakpoint Address in the debugger window Breakpoint listbox. The
breakpoint can be Active or Not Active for this feature to work.

9.6 AUTOMATIC BREAKS ON EVENT: You can have the debugger automatically
break the program execution for certian events such as when a DLL is
Loaded or Unloaded, When a Thread is Created or Exited, or when a
Process is Created or Exited. This is accomplished by checking the
appropriate checkboxes on the Lower Left Hand Debugger Window.

These check boxes can be set to user defaults by selecting the Debugger
Options item from the Debug Menu.

10.0 Attaching to an Active Process.
In this exercise you will learn how to attach the debugger to a process
that is already running in Windows.

10.1 Start calc.exe running in Windows

10.2 Select the “Attach to an Active Process” item from the Debug Menu OR
Press Ctrl L. A dialog box

will appear which lists all of the active processes currently running on
your computer. This list contains references to both 16 bit and 32 bit

programs. Only 32 bit programs can be attached to. Also, some 32 bit
programs are inhibited from being attached to because they are Windows
system critical and attaching the debugger to them may cause the
computer to crash. However if you want to play explore debugging these
programs, there is an Override Inhibit checkbox in the upper left hand
corner of the Dialog that will allow you to attach to these programs
when the box is checked. See the WARNING below.
The Attach Dialog box also shows what Modules (DLLs) each running
process has called and what Threads each process has created as you
select a process from the main list.

10.3 Find calc.exe in the list and select by clicking on the line.

10.4 Press the Attach button. Calc.exe will now load into the debugger and
the main W32Dasm window will move and resize while two new debugging
windows are be created. The main difference between attaching and
loading a program into the debugger is that attaching does not stop the
program at the Program Entry Point because this code was already
executed to get it running in Windows. You can break into the program by
pressing any of the Single Step buttons or the Pause button.

WARNING: Once a program is attached to, it will be terminated if W32Dasm
is closed. When attaching to system critical programs, be warned that
pausing them or terminating them will most likely cause Windows to not
operate properly. If this happens, reboot the computer.

11.0 Modifying Registers, Flags, Memory, &
Instructions

In this exercise you will learn how to modify register data, CPU Flag
data, Instructions, and Memory Data with the debugger

11.1 Load calc.exe into the debugger. Do Not RUN Program

11.2 Press the Modify Data button which is in the lower left hand debugger
window. A Modify Data Dialog will popup.

11.3 Modify Flags: To change the value of a CPU flag, left click on the
desired flag value. It will toggle from 0 to 1 on each click. When the
value of the flag is not the same as the original value, it will be
highlighted in blue. No modifications actually take place until you
Press the Modify button on this dialog.

RESETTING FLAG DATA: At any time before you press the Modify button, you
can RESET all the flags to their original value by pressing the R button
in the Flags data area.

NOTE: The T flag cannot be modified.

11.4 Modify CPU Register Values: To change the value of a CPU register, enter
the desired value in the Enter Value-> List Box. Depending on the Mode
Selected by the Mode checkboxes, you have the option of changing the
DWORD register (ie: Eax) or WORD register (ie: ax) or BYTE register (ie:
ah, or al). Press the button of desired register to change its value.
Values changed from the original are highlighted in blue. No
modifications actually take place until you Press the Modify button on
this dialog.

RESETTING REGISTER VALUES: Each register has a R button to reset it to

its original value. You can RESET the data at any time before you press
the Modify button.

11.5 Modify Memory Values: To change the (DWORD, WORD, or BYTE) value of a
memory location, enter the desired value in the Enter Value-> List Box
and enter the desired memory address in the Mem Loc List Box. Then press
the Mem button to modify the data. You can also adjust the Memory
Location by pressing the Next Mem Loc or Prev Mem Loc buttons. The value
of the Memory Location will increase or decrease by a DWORD, WORD, or
BYTE depending on the Mode selected in the Mode checkboxes. No
modifications actually take place until the Modify button is pressed.

Data addresses specified by the User Addr 1 and User Addr 2 and Display
2 List boxes on the lower left hand debugger window may also be modified
by pressing the appropriate buttons on the Modify Data dialog box.

RESETTING MEMORY ADDRESS VALUES: At any time before the Modify button is
pressed, you may RESET to the original value by pressing the
corresponding R button.

11.6 Modifying Instructions: You can NOP any instruction at the selected Eip
Address by checking the NOP Instruction @ eip before pressing the Modify
button. W32Dasm automatically determines how many NOP instructions to
insert to completely NOP the code line.

To Modify Instructions to any other Code, use the Code Patch Button
located on the Lower Right Hand Debugger Window. This will open the Code
Patcher Dialog Box.

The address of the code location/s to patch is determined by the
highlighted location in the Lower Right Hand Debugger Window. You can
change the address by (1.) Single Stepping the program, (2.) Use the
Goto Address button or (3.) Use the up/down scroll bars on the Lower
Right Hand Window Code Listing Display. Once you have the code address
you want to change, you can type instructions in the List Box titled
Enter New Instruction Below. When you hit the Enter key, the new
instruction will be listed in the Code Patch Listing display. If the
instruction is invalid or improperly formatted, it will not be entered.
As a general guideline for proper format, look at the main disassembly
listing for examples. Some instructions require that a size (ie: “dword
ptr” or “byte ptr”) be used. All numerical values are to be in HEX
notation. Leading zeros are not required. To clear the entire patch
lisying, press the Clear Patch button. To erase only the last line in
the listing, press the Remove Last Line button.

When modifing code, you need to be sure that instructions being replaced
are covered by the same number of bytes by the new code. Use the NOP
instructions to fill in bytes that are not used by the new instruction.

When the Code Patch has been composed, you may modify the program code
by pressing the Apply Patch button. You will get a Message Box
confirming your action. If you decide “Yes” the program code will be
modified.

NOTE 1: Code modifications cannot be done on Write Protected Memory
Areas such as where the KERNEL32.DLL code is placed.
NOTE 2: Code modifications are only displayed in the lower right
debugger window. The main disassembly listing only shows the original
data for the code.
NOTE 3: Code patches are only temporary changes. The original executable
file or DLL file is not modified. To make permanent changes to the
files, use a HEX editor to change the files data bytes at the proper
location. File locations can be determined by looking at the status bar
on the main disassembly window while the highlight bar is on the code
location of interest. The status bar will display the value of the hex
offset into the file where the byte data for that code is located.

12.0 Exploring Called Modules (DLLs).
In this exercise you will learn how to debug DLL files. DLL files cannot
be loaded by themselves. Only executables can be loaded by the debugger.
However, any DLL called by the executable can be debugger after the
executable is loaded into the debugger.

12.1 Load notepad.exe into the debugger and press F9 to run notepad.exe.

12.2 Look at the List Box called Active DLLs in the Lower Left Hand Debugger
Window. This List Box has the names of all the DLLs currently active in
the loaded program. If you left Double Click on a name, another dialog
box will popup

 giving details about the DLL. This dialog also gives you the option of
disassembling the DLL and attaching it to the debugger.

12.3 Press the YES button on the dialog box that pops up. COMCTL.DLL will now
disassemble and load. If COMDLG32.DLL was previously disassembled and
saved as a project file, the project file will be called. This saves the
time it takes to disassemble the file.

12.4 You can now use the Debugger on the DLL.

NOTE: Certain System DLLs such as KERNEL32.DLL DLL cannot accept breakpoints
or have their Memory modified because they are in READ ONLY protected
memory areas.

12.6 Press the toolbar and double click on GetOpenFileNameA. The
disassembly listing should goto code location :7FEB1162 which is a push
00000017 instruction. This code is the beginning of the COMDLG32.DLL
function GetOpenFileNameA. Now Press F2 to set a breakpoint at this
location.

12.7 Now goto the Notepad.exe programs File Menu and select Open. The
debugger should now halt notepad.exe execution and break at the
GetOpenFileNameA code location :7FEB1162 in COMDLG32.DLL.

13.0 The WIN API Detail Feature
In this exercise you will learn how to use the WIN API Detail feature of
W32Dasm.

13.1 W32Dasm has a feature which allows the user to look at the details of
many WIN API Functions. Almost all of the generally used function from
KERNEL32, ADVAPI32, SHELL32, COMCTL32, COMDLG32, USER32, and GDI32 are
available. Also, there are options to display UnDocumented API Details

and Process Local Function Details with a generic type data display. The
generic data shows both Hex Data and String Pointer Data if appropriate.

 Load calc.exe into the debugger, but don’t RUN it.

13.2 Make sure that the Enable API Details checkbox is checked on the Lower
Right Hand Debugger Window.(This should be checked by default). Also put
a check in the Stop Auto on API checkbox. If this box is not checked,
the auto single step function will continue without stopping when an API
function is reached.

NOTE: To activate UnDocumented API or Local Function Details, check the
appropriate box/es.

13.3 Now Press F5 to activate the Auto Single Step Into Function. (You can
also use the manual single step F7, to step thru the code until a API
function is reached).

13.4 The debugger should now auto single step into until the first WIN API
function is reached which is KERNEL.GetVersion at code
location :00405374. A Dialog box will appear that shows the API and type
of data and values input to the API function.
If the Get API Result button in this dialog is pressed, the API function
will run and return the API results in the dialog list box.

You can use the Copy Text button to Paste the dialog text into a text
editor.

13.5 Pressing F5 again or manually single stepping will cause the API Details
dialog box to minimize until the next API function is reached. The API
Details function can be disabled by unchecking the EnableAPI Details
checkbox on the Lower Right Hand Debugger Window.

13.6 If the instruction pointer is on a API call function but the API Enable
Details checkbox was not checked, you can activate the API List Window
by checking the API Enable Details checkbox and then press the API
button in the Lower Right Hand Debugger Window.

